Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth

被引:0
作者
Mishchenko S.P. [1 ]
Cherevatenko O.I. [2 ]
机构
[1] Ulyanovsk State University, Ulyanovsk
[2] Ulyanovsk Pedagogical State University, Ulyanovsk
基金
俄罗斯基础研究基金会;
关键词
Inductive Hypothesis; Variety Versus; Young Diagram; Polynomial Growth; Free Algebra;
D O I
10.1007/s10958-008-9054-y
中图分类号
学科分类号
摘要
We study the behavior of the codimension sequence of polynomial identities of Leibniz algebras over a field of characteristic 0. We prove that a variety V has polynomial growth if and only if the condition N2A, V with combining double tilde1 ⊄ V ⊂ N with combining double tildecA holds, where N2A is the variety of Lie algebras defined by the identity (x1x2) (x3x 4)(x5x6) ≡ 0, V with combining double tilde1 is the variety of Leibniz algebras defined by the identity x1(x2x3)(x4x5) ≡ 0, and N with combining double tildecA is the variety of Leibniz algebras defined by the identity (x1x2) ⋯ (x 2c+1x2c+2) ≡ 0. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:282 / 287
页数:5
相关论文
共 8 条
  • [1] Benediktovic I.I., Zalesskii A.E., T-ideals of free Lie algebras with polynomial growth of the sequence of codimensions, Izv. Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk, 3, pp. 5-10, (1980)
  • [2] Blokh A., A generalization of the concept of a Lie algebra, Sov. Math. Dokl., 6, pp. 1450-1452, (1966)
  • [3] Mishchenko S.P., Varieties of polynomial growth of Lie algebras over a field of characteristic zero, Math. Notes, 40, pp. 901-905, (1986)
  • [4] Mishchenko S.P., Varieties of Lie algebras with two-step nilpotent commutant, Izv. Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk, 6, pp. 39-43, (1987)
  • [5] Mishchenko S.P., Growth in varieties of Lie algebras, Russ. Math. Surv., 45, pp. 27-52, (1990)
  • [6] Mishchenko S.P., Cherevatenco O., A Leibniz variety with weak growth, Kazanskoe Mat. Obshch. Tr. Mat. Centra Im. N. I. Lobachevskogo, 31, pp. 103-104, (2005)
  • [7] Mishchenko S.P., Cherevatenco O., A Leibniz variety with weak growth, Vestn. SamGU, (2006)
  • [8] Mishchenko S., Valenti A., A Leibniz variety with almost polynomial growth, J. Pure Appl. Algebra, 202, pp. 82-101, (2005)