Nonoverlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Approximations of Hamilton–Jacobi–Bellman Equations

被引:0
作者
Iain Smears
机构
[1] Inria Paris,
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Domain decomposition; Preconditioners; GMRES; Discontinuous Galerkin; Finite element methods; Approximation in discontinuous spaces; Hamilton–Jacobi–Bellman equations; 65F10; 65N22; 65N55; 65N30; 35J66;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximations of fully nonlinear Hamilton–Jacobi–Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {A}$$\end{document}. In this work, we construct a nonoverlapping domain decomposition preconditioner P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}$$\end{document}, that is based on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {A}$$\end{document}, and we then show that the effectiveness of the preconditioner for solving the nonsymmetric problems can be studied in terms of the condition number κ(P-1A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (\mathbf {P}^{-1}\mathbf {A})$$\end{document}. In particular, we establish the bound κ(P-1A)≲1+p6H3/q3h3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (\mathbf {P}^{-1}\mathbf {A})\lesssim 1+ p^6 H^3 /q^3 h^3$$\end{document}, where H and h are respectively the coarse and fine mesh sizes, and q and p are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on q; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under h-refinement for moderate polynomial degrees.
引用
收藏
页码:145 / 174
页数:29
相关论文
共 38 条
[1]  
Antonietti PF(2007)Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case M2AN Math. Model. Numer. Anal. 41 21-54
[2]  
Ayuso B(2008)Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems. M2AN Math. Model. Numer. Anal. 42 443-469
[3]  
Antonietti PF(2011)A class of domain decomposition preconditioners for J. Sci. Comput. 46 124-149
[4]  
Ayuso B(2016)-discontinuous Galerkin finite element methods Int. J. Numer. Anal. Model. 13 513-524
[5]  
Antonietti PF(2005)A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for Numer. Math. 102 231-255
[6]  
Houston P(2012)-version discontinuous Galerkin methods Electron. Trans. Numer. Anal. 39 313-332
[7]  
Antonietti PF(1983)Two-level additive Schwarz preconditioners for SIAM J. Numer. Anal. 20 345-357
[8]  
Smears I(2001) interior penalty methods SIAM J. Numer. Anal. 39 1343-1365
[9]  
Houston P(2005)An iterative substructuring algorithm for a J. Sci. Comput. 22 289-314
[10]  
Brenner SC(2003) interior penalty method Math. Comput. 72 1215-1238