Valley-addressable polaritons in atomically thin semiconductors

被引:5
作者
Dufferwiel, S. [1 ]
Lyons, T. P. [1 ]
Solnyshkov, D. D. [2 ,3 ]
Trichet, A. A. P. [4 ]
Withers, F. [5 ,6 ]
Schwarz, S. [1 ]
Malpuech, G. [2 ,3 ]
Smith, J. M. [4 ]
Novoselov, K. S. [5 ]
Skolnick, M. S. [1 ]
Krizhanovskii, D. N. [1 ]
Tartakovskii, A. I. [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Clermont Auvergne, Inst Pascal, 24 Ave Blaise Pascal, F-63178 Aubiere, France
[3] CNRS, 24 Ave Blaise Pascal, F-63178 Aubiere, France
[4] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[5] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[6] Univ Exeter, CEMPS, Ctr Graphene Sci, Exeter EX4 4QF, Devon, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
EXCITON-POLARITONS;
D O I
10.1038/NPHOTON.2017.125
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The locking of the electron spin to the valley degree of freedom in transition metal dichalcogenide (TMD) monolayers has seen these materials emerge as a promising platform in valleytronics(1,2). When embedded in optical microcavities, the large oscillator strengths of excitonic transitions in TMDs allow the formation of polaritons that are part-light part-matter quasiparticles(3-7). Here, we report that polaritons in MoSe2 show an efficient retention of the valley pseudospin contrasting them with excitons and trions in this material. We find that the degree of the valley pseudospin retention is dependent on the photon, exciton and trion fractions in the polariton states. This allows us to conclude that in the polaritonic regime, cavity-modified exciton relaxation inhibits loss of the valley pseudospin. The valley-addressable exciton-polaritons and trion-polaritons presented here offer robust valley-polarized states with the potential for valleytronic devices based on TMDs embedded in photonic structures and valley-dependent nonlinear polariton-polariton interactions.
引用
收藏
页码:497 / +
页数:6
相关论文
共 30 条
[1]   Exciton-polariton spin switches [J].
Amo, A. ;
Liew, T. C. H. ;
Adrados, C. ;
Houdre, R. ;
Giacobino, E. ;
Kavokin, A. V. ;
Bramati, A. .
NATURE PHOTONICS, 2010, 4 (06) :361-366
[2]   Superfluidity of polaritons in semiconductor microcavities [J].
Amo, Alberto ;
Lefrere, Jerome ;
Pigeon, Simon ;
Adrados, Claire ;
Ciuti, Cristiano ;
Carusotto, Iacopo ;
Houdre, Romuald ;
Giacobino, Elisabeth ;
Bramati, Alberto .
NATURE PHYSICS, 2009, 5 (11) :805-810
[3]   Theory of neutral and charged excitons in monolayer transition metal dichalcogenides [J].
Berkelbach, Timothy C. ;
Hybertsen, Mark S. ;
Reichman, David R. .
PHYSICAL REVIEW B, 2013, 88 (04)
[4]   Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities [J].
Dufferwiel, S. ;
Schwarz, S. ;
Withers, F. ;
Trichet, A. A. P. ;
Li, F. ;
Sich, M. ;
Del Pozo-Zamudio, O. ;
Clark, C. ;
Nalitov, A. ;
Solnyshkov, D. D. ;
Malpuech, G. ;
Novoselov, K. S. ;
Smith, J. M. ;
Skolnick, M. S. ;
Krizhanovskii, D. N. ;
Tartakovskii, A. I. .
NATURE COMMUNICATIONS, 2015, 6
[5]   Strong exciton-photon coupling in open semiconductor microcavities [J].
Dufferwiel, S. ;
Fras, F. ;
Trichet, A. ;
Walker, P. M. ;
Li, F. ;
Giriunas, L. ;
Makhonin, M. N. ;
Wilson, L. R. ;
Smith, J. M. ;
Clarke, E. ;
Skolnick, M. S. ;
Krizhanovskii, D. N. .
APPLIED PHYSICS LETTERS, 2014, 104 (19)
[6]   Room-temperature exciton-polaritons with two-dimensional WS2 [J].
Flatten, L. C. ;
He, Z. ;
Coles, D. M. ;
Trichet, A. A. P. ;
Powell, A. W. ;
Taylor, R. A. ;
Warner, J. H. ;
Smith, J. M. .
SCIENTIFIC REPORTS, 2016, 6
[7]   Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides [J].
Glazov, M. M. ;
Amand, T. ;
Marie, X. ;
Lagarde, D. ;
Bouet, L. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2014, 89 (20)
[8]   Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization [J].
Godde, T. ;
Schmidt, D. ;
Schmutzler, J. ;
Assmann, M. ;
Debus, J. ;
Withers, F. ;
Alexeev, E. M. ;
Del Pozo-Zamudio, O. ;
Skrypka, O. V. ;
Novoselov, K. S. ;
Bayer, M. ;
Tartakovskii, A. I. .
PHYSICAL REVIEW B, 2016, 94 (16)
[9]   Bose-Einstein condensation of exciton polaritons [J].
Kasprzak, J. ;
Richard, M. ;
Kundermann, S. ;
Baas, A. ;
Jeambrun, P. ;
Keeling, J. M. J. ;
Marchetti, F. M. ;
Szymanska, M. H. ;
Andre, R. ;
Staehli, J. L. ;
Savona, V. ;
Littlewood, P. B. ;
Deveaud, B. ;
Dang, Le Si .
NATURE, 2006, 443 (7110) :409-414
[10]   Optical spin Hall effect [J].
Kavokin, A ;
Malpuech, G ;
Glazov, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (13)