Hardness of Approximation for Knapsack Problems

被引:0
作者
Harry Buhrman
Bruno Loff
Leen Torenvliet
机构
[1] CWI,ILLC
[2] University of Amsterdam,undefined
来源
Theory of Computing Systems | 2015年 / 56卷
关键词
Computational complexity; Knapsack problem; Subset-sum; Exponential-time hypothesis; PRAM without bit operations; Algebraic-circuit lower-bounds; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We show various hardness results for knapsack and related problems; in particular we will show that unless the Exponential-Time Hypothesis is false, subset-sum cannot be approximated any better than with an FPTAS. We also provide new unconditional lower bounds for approximating knapsack in Ketan Mulmuley’s parallel PRAM model. Furthermore, we give a simple new algorithm for approximating knapsack and subset-sum, that can be adapted to work for small space, or in small parallel time.
引用
收藏
页码:372 / 393
页数:21
相关论文
共 50 条
  • [41] SOLVING SEQUENTIAL KNAPSACK-PROBLEMS
    HARTMANN, M
    OLMSTEAD, T
    OPERATIONS RESEARCH LETTERS, 1993, 13 (04) : 225 - 232
  • [42] An experimental study of random knapsack problems
    Beier, R
    Vöcking, B
    ALGORITHMICA, 2006, 45 (01) : 121 - 136
  • [43] Using fuzzy numbers in knapsack problems
    Lin, FT
    Yao, JS
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 135 (01) : 158 - 176
  • [44] Computational aspects of hard Knapsack Problems
    Caccetta, L
    Kulanoot, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5547 - 5558
  • [45] An experimental study of random knapsack problems
    Rene Beier
    Berthold Vöcking
    Algorithmica, 2006, 45 : 121 - 136
  • [46] DNA computing of solutions to knapsack problems
    Henkel, Christiaan V.
    Back, Thomas
    Kok, Joost N.
    Rozenberg, Grzegorz
    Spaink, Herman P.
    BIOSYSTEMS, 2007, 88 (1-2) : 156 - 162
  • [47] Randomized algorithms for online knapsack problems
    Han, Xin
    Kawase, Yasushi
    Makino, Kazuhisa
    THEORETICAL COMPUTER SCIENCE, 2015, 562 : 395 - 405
  • [48] A note on dominance in unbounded knapsack problems
    Johnston, RE
    Khan, LR
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1995, 12 (02) : 145 - 160
  • [49] Knapsack problems: A parameterized point of view
    Gurski, Frank
    Rehs, Carolin
    Rethmann, Jochen
    THEORETICAL COMPUTER SCIENCE, 2019, 775 : 93 - 108
  • [50] Approximation Algorithms for the Weight-Reducible Knapsack Problem
    Goerigk, Marc
    Sabharwal, Yogish
    Schoebel, Anita
    Sen, Sandeep
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2014), 2014, 8402 : 203 - 215