Hardness of Approximation for Knapsack Problems

被引:0
作者
Harry Buhrman
Bruno Loff
Leen Torenvliet
机构
[1] CWI,ILLC
[2] University of Amsterdam,undefined
来源
Theory of Computing Systems | 2015年 / 56卷
关键词
Computational complexity; Knapsack problem; Subset-sum; Exponential-time hypothesis; PRAM without bit operations; Algebraic-circuit lower-bounds; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We show various hardness results for knapsack and related problems; in particular we will show that unless the Exponential-Time Hypothesis is false, subset-sum cannot be approximated any better than with an FPTAS. We also provide new unconditional lower bounds for approximating knapsack in Ketan Mulmuley’s parallel PRAM model. Furthermore, we give a simple new algorithm for approximating knapsack and subset-sum, that can be adapted to work for small space, or in small parallel time.
引用
收藏
页码:372 / 393
页数:21
相关论文
共 50 条
  • [21] KNAPSACK PROBLEMS IN GROUPS
    Myasnikov, Alexei
    Nikolaev, Andrey
    Ushakov, Alexander
    MATHEMATICS OF COMPUTATION, 2015, 84 (292) : 987 - 1016
  • [22] Knapsack problems with setups
    Michel, S.
    Perrot, N.
    Vanderbeck, F.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (03) : 909 - 918
  • [23] Hard knapsack problems that are easy for local search
    Ghosh, D
    Chakravarti, N
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1999, 16 (02) : 165 - 172
  • [24] Approximation for Knapsack Problemswith Multiple Constraints
    张立昂
    章寅
    JournalofComputerScienceandTechnology, 1999, (04) : 289 - 297
  • [25] On the Hardness of Range Assignment Problems
    Fuchs, Bernhard
    NETWORKS, 2008, 52 (04) : 183 - 195
  • [26] Graphical Algorithm for the Knapsack Problems
    Lazarev, Alexander
    Salnikov, Anton
    Baranov, Anton
    PARALLEL COMPUTING TECHNOLOGIES, 2011, 6873 : 459 - +
  • [27] Approximating multiobjective knapsack problems
    Erlebach, T
    Kellerer, H
    Pferschy, U
    MANAGEMENT SCIENCE, 2002, 48 (12) : 1603 - 1612
  • [28] KNAPSACK-PROBLEMS FOR NL
    JENNER, B
    INFORMATION PROCESSING LETTERS, 1995, 54 (03) : 169 - 174
  • [29] Knapsack problems in products of groups
    Frenkel, Elizaveta
    Nikolaev, Andrey
    Ushakov, Alexander
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 96 - 108
  • [30] Where are the hard knapsack problems?
    Pisinger, D
    COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (09) : 2271 - 2284