Geometric Quantization, Parallel Transport and the Fourier Transform

被引:0
作者
William D. Kirwin
Siye Wu
机构
[1] University of Colorado,Department of Mathematics
[2] University of Notre Dame,Department of Mathematics
来源
Communications in Mathematical Physics | 2006年 / 266卷
关键词
Hilbert Space; Parallel Transport; Bergman Kernel; Geometric Quantization; Bogoliubov Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum mechanics, the momentum space and position space wave functions are related by the Fourier transform. We investigate how the Fourier transform arises in the context of geometric quantization. We consider a Hilbert space bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} over the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document} of compatible complex structures on a symplectic vector space. This bundle is equipped with a projectively flat connection. We show that parallel transport along a geodesic in the bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H} \to \mathcal{J}$$\end{document} is a rescaled orthogonal projection or Bogoliubov transformation. We then construct the kernel for the integral parallel transport operator. Finally, by extending geodesics to the boundary (for which the metaplectic correction is essential), we obtain the Segal-Bargmann and Fourier transforms as parallel transport in suitable limits.
引用
收藏
相关论文
共 12 条
  • [1] Axelrod S.(1991)Geometric quantization of Chern-Simons gauge theory J. Diff. Geom. 33 787-902
  • [2] Della Pietra S.(1961)On a Hilbert space of analytic functions and an associated integral transform Comm. Pure Appl. Math. 14 187-214
  • [3] Witten E.(2005)Geometric quantization, complex structures and the coherent state transform J. Funct. Anal. 221 303-322
  • [4] Bargmann V.(2002)Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type Commun. Math. Phys. 226 233-268
  • [5] Florentino C.(1984)Spineurs symplectiques purs et indice de Maslov de plan Lagrangiens positifs J. Funct. Anal. 59 90-122
  • [6] Matias P.(1943)Symplectic geometry Amer. J. Math. 65 1-86
  • [7] Mourao J.(1981)Geometric quantization and the Bogoliubov transformation Proc. Royal Soc. London A 378 119-139
  • [8] Nunes J.P.(undefined)undefined undefined undefined undefined-undefined
  • [9] Hall B.C.(undefined)undefined undefined undefined undefined-undefined
  • [10] Magneron B.(undefined)undefined undefined undefined undefined-undefined