Properties of bounded representations for G-frames

被引:0
|
作者
A. Najati
F. Ghobadzadeh
Y. Khedmati
J. Sedghi Moghaddam
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Sciences
来源
Journal of Pseudo-Differential Operators and Applications | 2022年 / 13卷
关键词
Representation of a frame; -Frame; Stability; Primary 41A58; 42C15; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the paper is to analyze g-frames of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}, where T∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in B(\mathcal {H})$$\end{document} and φ∈B(H,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in B(\mathcal {H},\mathcal {K})$$\end{document}, and discuss the properties of the operator T. We consider stability of g-Riesz sequences of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}. Finally, a weighted representation of a g frame is introduced and some of its properties are presented. We provide a sufficient condition for a given g-frame Λ={Λi∈B(H,K)}i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =\{\Lambda _{i}\in {B(\mathcal {H},\mathcal {K})}\}_{i=1}^\infty $$\end{document} to be represented by an operator T∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in B(\mathcal {H})$$\end{document} and a sequence {ai}i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a_i\}_{i=1}^\infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Properties of bounded representations for G-frames
    Najati, A.
    Ghobadzadeh, F.
    Khedmati, Y.
    Moghaddam, J. Sedghi
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (01)
  • [2] Operator representations of g-frames in Hilbert spaces
    Li, Dongwei
    Leng, Jinsong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09) : 1861 - 1877
  • [3] On some properties of continuous g-frames and Riesz-type continuous g-frames
    Mohammad Reza Abdollahpour
    Yavar khedmati
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 59 - 74
  • [4] Fusion frames and g-frames
    Khosravi, Amir
    Musandeh, Kamran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1068 - 1083
  • [5] G-frames as special frames
    Askarizadeh, Abas
    Dehghan, Mohammad Ali
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (01) : 60 - 70
  • [6] Stability of g-frames
    Sun, Wenchang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 858 - 868
  • [7] Redundancy of g-frames
    Morteza Rahmani
    Complex Analysis and Operator Theory, 2020, 14
  • [8] SOME RESULTS ON FRAMES AND G-FRAMES
    Sadri, Vahid
    Ahmadi, Reza
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 99 - 108
  • [9] Some Results on Fusion Frames and g-Frames
    Nguyen Quynh Nga
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [10] On the Sum of g-Frames and Their Stability in Hilbert Spaces
    Javad Baradaran
    Morteza Zerehpoush
    Mediterranean Journal of Mathematics, 2023, 20