Effect of adiabatically trapped-suprathermal electrons on ion-acoustic solitons in electron-ion plasma

被引:0
|
作者
R. Fermous
M. Benzekka
A. Merriche
机构
[1] Djilali Bounaama University,Laboratoire de Valorisation des Substances Naturelles (LVSN)
[2] ENS-Kouba,Laboratoire de Physique des Particules et Physique Statistique
[3] Faculty of Physics,Theoretical Physics Laboratory
[4] USTHB,undefined
来源
关键词
Ion-acoustic (IA) solitons; IA soliton energy; -Gurevich distribution function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of nonlinear ion-acoustic (IA) solitary waves in an electron-ion plasma is analyzed, assuming electrons obey the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa $\end{document}-Gurevich distribution. The density of adiabatically trapped suprathermal electrons is derived from a physically relevant distribution describing such electrons. As an application, the modified Korteweg-de Vries (mK-dV) equation considering the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa $\end{document}-Gurevich electron density is derived. The study has revealed that the main properties (phase velocity, amplitude, and width) of small IA waves are significantly influenced by trapped suprathermal electrons. We have found that as electron suprathermality increases in plasma (i.e., as electrons move far away from their Maxwellian trapping), both amplitude and width of IA soliton decreases. Our study revealed that the IA soliton energy decreases when electrons move far from their Maxwellian trapping. Studying solitary ion acoustic waves may allow us to gain a deeper understanding of space where fast superthermal electrons are present along with ions (e.g. Earth’s auroral region, Jupiter magnetosphere).
引用
收藏
相关论文
共 50 条
  • [41] Nonplanar ion-acoustic Gardner solitons in a pair-ion plasma with nonextensive electrons and positrons
    Ghosh, Uday Narayan
    Ghosh, Deb Kumar
    Chatterjee, Prasanta
    Bacha, Mustapha
    Tribeche, Mouloud
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 343 (01) : 265 - 272
  • [42] PIC simulation of the electron-ion collision effects on suprathermal electrons
    Wu, Yanqing
    Han, Shensheng
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (05): : 915 - 921
  • [43] PIC simulation of the electron-ion collision effects on suprathermal electrons
    Wu, YQ
    Han, SS
    ACTA PHYSICA SINICA, 2000, 49 (05) : 915 - 921
  • [45] Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons
    Mayout, Saliha
    Gougam, Leila Ait
    Tribeche, Mouloud
    PHYSICS OF PLASMAS, 2016, 23 (03)
  • [46] Bifurcation analysis of ion-acoustic waves in an adiabatic trapped electron and warm ion plasma
    Abdikian, Alireza
    Saha, Asit
    Alimirzaei, Shirin
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 1051 - 1058
  • [47] Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions
    Mishra, M. K.
    Tiwari, R. S.
    Chawla, J. K.
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [48] Ion-acoustic solitons in weakly relativistic plasma containing electron-positron and ion
    Gill, Tarsem Singh
    Singh, Amandeep
    Kaur, Harvinder
    Saini, Nareshpal Singh
    Bala, Parveen
    PHYSICS LETTERS A, 2007, 361 (4-5) : 364 - 367
  • [49] Effect of combined Kappa-Cairns distributed electrons on modulational instability and envelope soliton of ion-acoustic waves in electron-ion dusty plasma
    Pain, Rittika
    Dalui, Sandip
    Sardar, Sankirtan
    Bandyopadhyay, Anup
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [50] Nonlinear Ion-Acoustic Waves in Degenerate Plasma with Landau Quantized Trapped Electrons
    Jahangir, R.
    Ali, S.
    FRONTIERS IN PHYSICS, 2021, 9