Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings

被引:0
作者
Ke Nan Feng
Dong Ruan
Zhu Pan
Frank Collins
Yu Bai
C. M. Wang
Wen Hui Duan
机构
[1] Monash University,Department of Civil Engineering
[2] Swinburne University of Technology,Faculty of Engineering & Industrial Sciences
[3] National University of Singapore,Engineering Science Programme and Department of Civil and Environmental Engineering
来源
Materials and Structures | 2015年 / 48卷
关键词
Geopolymer concrete; Strain rate effect; SHPB; Compressive strength;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of strain rate on the compressive behaviours of geopolymer concrete and mortar is reported. Split Hopkinson pressure bar was adopted for the high strain rate testings. The dynamic increase factors for compressive strength (DIFfc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DIF}}_{{f_{\text{c}} }}$$\end{document}) and critical strain (DIFεc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DIF}}_{{\varepsilon_{\text{c}} }}$$\end{document}) were measured and compared with Concrete Comite Euro-international du Beton (CEB) recommendations. The results show that alkaline activators have significant influence on the quasi-static compressive strength of geopolymer concrete. With high strain rate loading, the DIFfc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DIF}}_{{f_{\text{c}} }}$$\end{document} of geopolymer concrete and mortar mixes increase with respect to increasing strain rates and in agreement with CEB recommendations. In addition, the coarse aggregates in geopolymer concrete mixes play important role in the increase of compressive strength. However, CEB recommendations underestimate the DIFεc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DIF}}_{{\varepsilon_{\text{c}} }}$$\end{document} of critical strain for geopolymer concrete in the high strain rate loading. It is found that for the quasi-static loading and low strain rate loading, cracks propagate along interface transition zone (ITZ) and matrix of geopolymer concrete specimens whereas cracks occur at both the aggregates and ITZ under high strain rate loading.
引用
收藏
页码:671 / 681
页数:10
相关论文
共 80 条
[1]  
Davidovits J(1991)Geopolymers: inorganic polymeric new materials J Therm Anal 37 1633-1656
[2]  
Rahier H(1996)Low-temperature synthesized aluminosilicate glasses J Mater Sci 31 71-79
[3]  
Mele B(2007)Geopolymer technology: the current state of the art J Mater Sci 42 2917-2933
[4]  
Biesemans M(2004)On the development of fly ash-based geopolymer concrete ACI Mater J 101 467-472
[5]  
Wastiels J(2009)Analysis of geopolymer concrete columns Mater Struct 42 715-724
[6]  
Wu X(2005)Fly ash-based geopolymer concrete Aus J Struct Eng 6 77-86
[7]  
Duxson P(2007)Fly ash-based geopolymer concrete: study of slender reinforced columns J Mater Sci 42 3124-3130
[8]  
Fernandez Jimenez A(2011)Fracture properties of geopolymer paste and concrete Mag Concr Res 63 9-724
[9]  
Provis JL(2009)Analysis of geopolymer concrete columns Mater Struct 42 715-189
[10]  
Lukey GC(2014)Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure Cem Concr Res 56 182-264