The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter

被引:0
作者
Li Ying Kang
Jing Wang
Er Fang Shan
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
来源
Acta Mathematica Sinica, English Series | 2022年 / 38卷
关键词
Unicyclic hypergraph; α-spectral radius; principal eigenvector; diameter; pendant edge; 05C50; 05C65; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 ≤ α < 1, the α-spectral radius of an r-uniform hypergraph G is the spectral radius of Aα(G)=αD(G)+(1−α)A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal A}_\alpha}(G) = \alpha {\cal D}(G) + (1 - \alpha){\cal A}(G)$$\end{document}, where D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}(G)$$\end{document} and A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}(G)$$\end{document} are the diagonal tensor of degrees and adjacency tensor of G, respectively. In this paper, we show the perturbation of α-spectral radius by contracting an edge. Then we determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with fixed diameter. We also determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with given number of pendant edges.
引用
收藏
页码:924 / 936
页数:12
相关论文
共 50 条
[31]   The Maximum Hosoya Index of Unicyclic Graphs with Diameter at Most Four [J].
Liu, Weijun ;
Ban, Jingwen ;
Feng, Lihua ;
Cheng, Tao ;
Emmert-Streib, Frank ;
Dehmer, Matthias .
SYMMETRY-BASEL, 2019, 11 (08)
[32]   Minimal skew energy of oriented unicyclic graphs with fixed diameter [J].
Xiang-Hao Yang ;
Shi-Cai Gong ;
Guang-Hui Xu .
Journal of Inequalities and Applications, 2013
[33]   Minimal skew energy of oriented unicyclic graphs with fixed diameter [J].
Yang, Xiang-Hao ;
Gong, Shi-Cai ;
Xu, Guang-Hui .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[34]   The Laplacian spectral radius of unicyclic graphs with k pendent vertices [J].
Zhang, Xiaoling ;
Zhang, Heping .
ARS COMBINATORIA, 2009, 90 :345-355
[35]   Spectral radius of graphs with given diameter [J].
Feng, Lihua .
ARS COMBINATORIA, 2011, 98 :303-308
[36]   On the maximum spectral radius of multipartite graphs [J].
Wu, Jian ;
Zhao, Haixia .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :850-855
[37]   On the distance spectral radius of digraphs with given diameter [J].
Xi, Weige ;
So, Wasin ;
Wang, Ligong .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14) :2547-2557
[38]   On the Spectral Radius of Trees with the Given Diameter d [J].
TAN Shang-wang .
数学季刊, 2004, (01) :57-62
[39]   Graphs with given diameter maximizing the spectral radius [J].
van Dam, E. R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :454-457
[40]   Distance spectral radius of a tree with given diameter [J].
Yu, Guanglong ;
Guo, Shuguang ;
Zhai, Mingqing .
ARS COMBINATORIA, 2017, 134 :351-362