The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter

被引:0
作者
Li Ying Kang
Jing Wang
Er Fang Shan
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
来源
Acta Mathematica Sinica, English Series | 2022年 / 38卷
关键词
Unicyclic hypergraph; α-spectral radius; principal eigenvector; diameter; pendant edge; 05C50; 05C65; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 ≤ α < 1, the α-spectral radius of an r-uniform hypergraph G is the spectral radius of Aα(G)=αD(G)+(1−α)A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal A}_\alpha}(G) = \alpha {\cal D}(G) + (1 - \alpha){\cal A}(G)$$\end{document}, where D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}(G)$$\end{document} and A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}(G)$$\end{document} are the diagonal tensor of degrees and adjacency tensor of G, respectively. In this paper, we show the perturbation of α-spectral radius by contracting an edge. Then we determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with fixed diameter. We also determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with given number of pendant edges.
引用
收藏
页码:924 / 936
页数:12
相关论文
共 50 条
  • [21] The first few unicyclic and bicyclic hypergraphs with largest spectral radii
    Chen Ouyang
    Qi, Liqun
    Yuan, Xiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 527 : 141 - 162
  • [22] The maximum Mostar indices of unicyclic graphs with given diameter
    Liu, Guorong
    Deng, Kecai
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [23] Minimizing the least eigenvalue of unicyclic graphs with fixed diameter
    Zhai, Mingqing
    Liu, Ruifang
    Shu, Jinlong
    DISCRETE MATHEMATICS, 2010, 310 (04) : 947 - 955
  • [24] On the signless Laplacian index of unicyclic graphs with fixed diameter
    He, Shushan
    Li, Shuchao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 252 - 261
  • [25] The minimum Wiener index of unicyclic graphs with a fixed diameter
    Shang-wang Tan
    Journal of Applied Mathematics and Computing, 2018, 56 : 93 - 114
  • [26] The minimum Wiener index of unicyclic graphs with a fixed diameter
    Tan, Shang-wang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 56 (1-2) : 93 - 114
  • [27] Some Bounds on the Spectral Radius of Uniform Hypergraphs
    Fang, Xiaona
    Huang, Yufei
    You, Lihua
    FRONTIERS OF MATHEMATICS, 2023, 18 (05): : 1211 - 1228
  • [28] Some Bounds on the Spectral Radius of Uniform Hypergraphs
    Xiaona Fang
    Yufei Huang
    Lihua You
    Frontiers of Mathematics, 2023, 18 : 1211 - 1228
  • [29] On distance spectral radius of uniform hypergraphs with cycles
    Lin, Hongying
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 125 - 143
  • [30] EXTREMAL PROPERTIES OF THE DISTANCE SPECTRAL RADIUS OF HYPERGRAPHS
    Wang, Yanna
    Zhou, Bo
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 411 - 429