The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter

被引:0
|
作者
Li Ying Kang
Jing Wang
Er Fang Shan
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
来源
Acta Mathematica Sinica, English Series | 2022年 / 38卷
关键词
Unicyclic hypergraph; α-spectral radius; principal eigenvector; diameter; pendant edge; 05C50; 05C65; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 ≤ α < 1, the α-spectral radius of an r-uniform hypergraph G is the spectral radius of Aα(G)=αD(G)+(1−α)A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal A}_\alpha}(G) = \alpha {\cal D}(G) + (1 - \alpha){\cal A}(G)$$\end{document}, where D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}(G)$$\end{document} and A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}(G)$$\end{document} are the diagonal tensor of degrees and adjacency tensor of G, respectively. In this paper, we show the perturbation of α-spectral radius by contracting an edge. Then we determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with fixed diameter. We also determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with given number of pendant edges.
引用
收藏
页码:924 / 936
页数:12
相关论文
共 50 条
  • [1] The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter
    Kang, Li Ying
    Wang, Jing
    Shan, Er Fang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (05) : 924 - 936
  • [2] On the spectral radius of unicyclic graphs with fixed diameter
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 449 - 457
  • [3] On the Laplacian Spectral Radius of Unicyclic Graphs with Fixed Diameter
    Guo, Shu-Guang
    ARS COMBINATORIA, 2012, 106 : 47 - 58
  • [4] On the spectral radius of unicyclic graphs with fixed maximum degree
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Wu, Bao-Feng
    ARS COMBINATORIA, 2011, 102 : 21 - 31
  • [5] On the a-spectral radius of unicyclic and bicyclic graphs with a fixed diameter
    Wang, Feifei
    Shan, Haiying
    Zhai, Yuyao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [6] The maximal spectral radius of the uniform unicyclic hypergraphs with perfect matchings
    Sun, Rui
    Wang, Wen-Huan
    Ni, Zhen-Yu
    FILOMAT, 2023, 37 (18) : 5949 - 5967
  • [7] On the spectral radius of unicyclic graphs with fixed girth
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    ARS COMBINATORIA, 2013, 108 : 65 - 80
  • [8] On the spectral moments of unicyclic graphs with fixed diameter
    Cheng, Bo
    Liu, Bolian
    Liu, Jianxi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1123 - 1131
  • [9] On the spectral radius of trees with fixed diameter
    Guo, JM
    Shao, JY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (01) : 131 - 147
  • [10] On the Laplacian spectral radius of trees with fixed diameter
    Guo, Ji-Ming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 618 - 629