The MV formalism for IBL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{IBL}}_\infty $$\end{document}- and BV∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{BV}}_\infty $$\end{document}-algebras

被引:0
作者
Martin Markl
Alexander A. Voronov
机构
[1] Mathematical Institute of the Academy,Faculty of Mathematics and Physics
[2] Charles University,School of Mathematics
[3] University of Minnesota,Kavli IPMU (WPI), UTIAS
[4] The University of Tokyo,undefined
关键词
-algebra; -algebra; Master equation; Transfer; 08C05; 18G55 (Primary); 16E45; 58A50 (Secondary);
D O I
10.1007/s11005-017-0954-y
中图分类号
学科分类号
摘要
We develop a new formalism for the quantum master equation ΔeS/ħ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta e^{S/\hbar } = 0$$\end{document} and the category of IBL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{IBL}_\infty $$\end{document}-algebras and simplify some homotopical algebra arising in the context of oriented surfaces with boundary. We introduce and study a category of MV-algebras, which, on the one hand, contains such important categories as those of IBL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{IBL}_\infty $$\end{document}-algebras and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt{L}_\infty $$\end{document}-algebras and, on the other hand, is homotopically trivial, in particular allowing for a simple solution of the quantum master equation. We also present geometric interpretation of our results.
引用
收藏
页码:1515 / 1543
页数:28
相关论文
共 13 条
  • [1] Bessis D(1980)Quantum field theory techniques in graphical enumeration Adv. Appl. Math. 1 109-157
  • [2] Itzykson C(2010)Algebras over J. Homotopy Relat. Struct. 5 15-36
  • [3] Zuber JB(1995)Strongly homotopy Lie algebras Comm. Algebra 23 2147-2161
  • [4] Drummond-Cole GC(2006)Algebras with one operation including Poisson and other Lie-admissible algebras J. Algebra 299 171-189
  • [5] Terilla J(2013)Quantum open-closed homotopy algebra and string field theory Comm. Math. Phys. 321 769-801
  • [6] Tradler T(2008)Smoothness theorem for differential BV algebras J. Topol. 1 693-702
  • [7] Lada T(undefined)undefined undefined undefined undefined-undefined
  • [8] Markl M(undefined)undefined undefined undefined undefined-undefined
  • [9] Markl M(undefined)undefined undefined undefined undefined-undefined
  • [10] Remm E(undefined)undefined undefined undefined undefined-undefined