Summation Methods for Fourier Series with Respect to the Azoff–Shehada System

被引:0
作者
Pyshkin A. [1 ]
机构
[1] St.Petersburg State University, St.Petersburg
关键词
Fourier Series; Operator Algebra; Root Vector; Tridiagonal Matrix; Summation Method;
D O I
10.1007/s10958-016-2868-0
中图分类号
学科分类号
摘要
A special class of complete minimal systems with complete biorthogonal system in a Hilbert space is considered. This class was introduced by Azoff and Shehada. The paper studies conditions under which there exists a linear summation method for Fourier series with respect to the Azoff–Shehada system. A construction of a linear summation method of the Fourier series for a given vector is presented, as well as a construction of a universal linear summation method. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:617 / 623
页数:6
相关论文
共 9 条
[1]  
Dovbysh L.N., Nikol'skii N.K., Sudakov V.N., How good can be a nonhereditary complete system?, Zap. Nauchn. Semin. LOMI, 73, pp. 52-69, (1977)
[2]  
Dovbysh L.N., Nikol'skii N.K., Two ways to avoid hereditary completeness, Zap. Nauchn. Semin. LOMI, 65, pp. 183-188, (1976)
[3]  
Markus A.S., The spectral synthesis problem for operators with a point spectrum, Izv. AN SSSR, Ser. Matem., 34, pp. 662-668, (1970)
[4]  
Nikol'skii N.K., Complete extensions of Volterra operators, Izv. AN SSSR, Ser. Matem., 33, pp. 1349-1355, (1969)
[5]  
Azoff E., Shehada H., Algebras generated by mutually orthogonal idempotent operators, J. Oper. Theory, 29, pp. 249-267, (1993)
[6]  
Baranov A., Belov Y., Borichev A., Hereditary completeness for systems of exponentials and reproducing kernels, Adv. Math., 235, pp. 525-554, (2013)
[7]  
Baranov A., Belov Y., Borichev A., Spectral synthesis in de Branges spaces, Geom. Funct. Anal. (GAFA), 25, pp. 417-452, (2015)
[8]  
Katavolos A., Lambrou M., Papadakis M., On some algebras diagonalized by Mbases of ℓ2, Integr. Equat. Oper. Theory, 17, pp. 68-94, (1993)
[9]  
Larson D., Wogen W., Reflexivity properties of T ⊕0, J. Funct. Anal., 92, pp. 448-467, (1990)