Normalized Solutions to the Critical Choquard-type Equations with Weakly Attractive Potential and Nonlocal Perturbation

被引:0
作者
Lei Long
Fuyi Li
Ting Rong
机构
[1] Shanxi University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Choquard-type equations; Weakly attractive potential; Normalized solutions; Positive solutions; 35D30; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we look for solutions to the following Choquard-type equation -Δu+(V+λ)u=(Iα∗|u|p)|u|p-2u+μ(Iα∗|u|q)|u|q-2uinRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u+(V+\lambda )u=(I_\alpha *|u|^{p})|u|^{p-2}u+\mu (I_\alpha *|u|^q)|u|^{q-2}u\ \ \textrm{in}\ \mathbb {R}^N, \end{aligned}$$\end{document}having a prescribed mass ∫RNu2=a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int \limits _{\mathbb {R}^N}u^2=a>0$$\end{document}, where λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} will arise as a Lagrange multiplier, N⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geqslant 3$$\end{document}, Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha $$\end{document} is the Riesz potential, α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}, p∈(α¯,2α∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (\bar{\alpha },2_\alpha ^*]$$\end{document}, q∈(α¯,2α∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (\bar{\alpha },2_\alpha ^*)$$\end{document}, α¯=(N+α+2)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\alpha }=(N+\alpha +2)/N$$\end{document} is the mass critical exponent, 2α∗=(N+α)/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_\alpha ^*=(N+\alpha )/(N-2)$$\end{document} is the Hardy–Littlewood–Sobolev upper critical exponent and μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document} is a constant. Under suitable conditions on the potential V, the above Choquard-type equation admits a positive ground state normalized solution by comparison arguments, in particular, when p=2α∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2_\alpha ^*$$\end{document}, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} needs to be larger and the Hardy–Littlewood–Sobolev subcritical approximation method is used. At the end of this paper, a new result on the regularity of solutions and Pohozaev identity to a more general Choquard-type equation is established.
引用
收藏
相关论文
共 64 条
[11]  
Zou W(1997)Nodal solutions for the Choquard equation Nonlinear Anal. 28 1633-145
[12]  
Cingolani S(2021)Existence of solutions with prescribed norm for semilinear elliptic equations J. Differ. Equ. 303 277-4524
[13]  
Gallo M(2022)Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater equation Adv. Nonlinear Anal. 11 1134-467
[14]  
Tanaka K(2023)Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, qualitative properties and stability Complex Var. Ellipt. Equ. 68 578-184
[15]  
Cingolani S(2020)Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation Commun. Contemp. Math. 22 1950023, 28-6579
[16]  
Jeanjean L(2014)Choquard equations with critical nonlinearities J. Math. Phys. 55 10331-813
[17]  
Cingolani S(2021)The existence of positive solutions with prescribed Math. Methods Appl. Sci. 44 1063-600
[18]  
Gallo M(1980)-norm for nonlinear Choquard equations Nonlinear Anal. 4 109-3723
[19]  
Tanaka K(1984)Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal perturbation Ann. Inst. H. Poincaré Anal. Non Linéaire 1 4493-417
[20]  
Cingolani S(2019)The Choquard equation and related questions J. Differ. Equ. 267 455-160