Normalized Solutions to the Critical Choquard-type Equations with Weakly Attractive Potential and Nonlocal Perturbation

被引:0
作者
Lei Long
Fuyi Li
Ting Rong
机构
[1] Shanxi University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Choquard-type equations; Weakly attractive potential; Normalized solutions; Positive solutions; 35D30; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we look for solutions to the following Choquard-type equation -Δu+(V+λ)u=(Iα∗|u|p)|u|p-2u+μ(Iα∗|u|q)|u|q-2uinRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u+(V+\lambda )u=(I_\alpha *|u|^{p})|u|^{p-2}u+\mu (I_\alpha *|u|^q)|u|^{q-2}u\ \ \textrm{in}\ \mathbb {R}^N, \end{aligned}$$\end{document}having a prescribed mass ∫RNu2=a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int \limits _{\mathbb {R}^N}u^2=a>0$$\end{document}, where λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} will arise as a Lagrange multiplier, N⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geqslant 3$$\end{document}, Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha $$\end{document} is the Riesz potential, α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}, p∈(α¯,2α∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (\bar{\alpha },2_\alpha ^*]$$\end{document}, q∈(α¯,2α∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (\bar{\alpha },2_\alpha ^*)$$\end{document}, α¯=(N+α+2)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\alpha }=(N+\alpha +2)/N$$\end{document} is the mass critical exponent, 2α∗=(N+α)/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_\alpha ^*=(N+\alpha )/(N-2)$$\end{document} is the Hardy–Littlewood–Sobolev upper critical exponent and μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document} is a constant. Under suitable conditions on the potential V, the above Choquard-type equation admits a positive ground state normalized solution by comparison arguments, in particular, when p=2α∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2_\alpha ^*$$\end{document}, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} needs to be larger and the Hardy–Littlewood–Sobolev subcritical approximation method is used. At the end of this paper, a new result on the regularity of solutions and Pohozaev identity to a more general Choquard-type equation is established.
引用
收藏
相关论文
共 64 条
[1]  
Ao Y(2023)Normalized solutions for nonlinear Choquard equations with general nonlocal term J. Fixed Point Theory Appl. 25 17-151
[2]  
Zhao X(2020)Normalized solutions for a class of nonlinear Choquard equations Part. Differ. Equ. Appl. 1 34, 25-3568
[3]  
Zou W(1979)Remarks on the Schrödinger operator with singular complex potentials J. Math. Pures Appl. (9) 58 137-215
[4]  
Bartsch T(2012)On the standing waves for nonlinear Hartree equation with confining potential J. Math. Phys. 53 033702-135
[5]  
Liu Y(2022)Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities Calc. Var. Part. Differ. Equat. 61 68-1659
[6]  
Liu Z(2019)Stationary waves with prescribed SIAM J. Math. Anal. 51 3533-325
[7]  
Brezis H(2021)-norm for the planar Schrödinger-Poisson system Symmetry 13 1199-1164
[8]  
Kato T(2022)Symmetric ground states for doubly nonlocal equations with mass constraint Math. Eng. 4 056, 33-602
[9]  
Cao P(2022)On fractional Schrödinger equations with Hartree type nonlinearities J. Differ. Equ. 334 194-10360
[10]  
Wang J(2016)Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case J. Funct. Anal. 271 107-1072