Perovskite synthesizability using graph neural networks

被引:0
作者
Geun Ho Gu
Jidon Jang
Juhwan Noh
Aron Walsh
Yousung Jung
机构
[1] Department of Chemical and Biomolecular Engineering (BK21 four),School of Energy Technology
[2] KAIST,Department of Materials
[3] Korea Institute of Energy Technology,Department of Materials Science and Engineering
[4] 200 Hyuksin-ro,undefined
[5] Imperial College London,undefined
[6] Yonsei University,undefined
来源
npj Computational Materials | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Perovskite is an important material type in geophysics and for technologically important applications. However, the number of synthetic perovskites remains relatively small. To accelerate the high-throughput discovery of perovskites, we propose a graph neural network model to assess their synthesizability. Our trained model shows a promising 0.957 out-of-sample true positive rate, significantly improving over empirical rule-based methods. Further validation is established by demonstrating that a significant portion of the virtual crystals that are predicted to be synthesizable have already been indeed synthesized in literature, and those with the lowest synthesizability scores have not been reported. While previous empirical strategies are mainly applicable to metal oxides, our model is general and capable of predicting the synthesizability across all classes of perovskites, including chalcogenide, halide, and hydride perovskites, as well as anti-perovskites. We apply the method to identify synthesizable perovskite candidates for two potential applications, the Li-rich ion conductors and metal halide optical materials that can be tested experimentally.
引用
收藏
相关论文
共 50 条
  • [11] Formalizing neural networks using graph transformations
    Berthold, MR
    Fischer, I
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 275 - 280
  • [12] DISTRIBUTED SCHEDULING USING GRAPH NEURAL NETWORKS
    Zhao, Zhongyuan
    Verma, Gunjan
    Rao, Chirag
    Swami, Ananthram
    Segarra, Santiago
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4720 - 4724
  • [13] Hierarchical graph visualization using neural networks
    Kusnadi
    Carothers, JD
    Chow, F
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 794 - 799
  • [14] Process Discovery Using Graph Neural Networks
    Sommers, Dominique
    Menkovski, Vlado
    Fahland, Dirk
    2021 3RD INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2021), 2021, : 40 - 47
  • [15] Footfall Prediction Using Graph Neural Networks
    Boz, Hasan Alp
    Bahrami, Mohsen
    Balcisoy, Selim
    Pentland, Alex
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [16] Using Graph Neural Networks for Program Termination
    Alon, Yoav
    David, Cristina
    PROCEEDINGS OF THE 30TH ACM JOINT MEETING EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE 2022, 2022, : 910 - 921
  • [17] Neural Graph Learning: Training Neural Networks Using Graphs
    Bui, Thang D.
    Ravi, Sujith
    Ramavajjala, Vivek
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 64 - 71
  • [18] Reconstruction of gene regulatory networks using graph neural networks
    Paul, M. Emma
    Jereesh, A. S.
    Kumar, G. Santhosh
    APPLIED SOFT COMPUTING, 2024, 163
  • [19] Graph-to-Sequence Learning using Gated Graph Neural Networks
    Beck, Daniel
    Haffari, Gholamreza
    Cohn, Trevor
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 273 - 283
  • [20] Bipartite Graph Coarsening for Text Classification Using Graph Neural Networks
    dos Santos, Nicolas Roque
    Minatel, Diego
    Baria Valejo, Alan Demetrius
    Lopes, Alneu de A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 589 - 604