On a characterization of commutativity for C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras via gyrogroup operations

被引:0
作者
Toshikazu Abe
Osamu Hatori
机构
[1] Niigata University,Department of Mathematical Science, Graduate School of Science and Technology
[2] Niigata University,Department of Mathematics, Faculty of Science
关键词
Gyrocommutative gyrogroup; Positive invertible element ; -algebra; Commutativity; 46L05; 20N05;
D O I
10.1007/s10998-016-0126-3
中图分类号
学科分类号
摘要
We show that a unital C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra is commutative if and only if the gyrogroup of the set of positive invertible elements is in fact a group.
引用
收藏
页码:248 / 251
页数:3
相关论文
共 16 条
  • [1] Beneduci R(2014)On the standard K-loop structures of positive invertible elements in a J. Math. Anal. Appl. 420 551-562
  • [2] Molnár L(1974)-algebra Glasgow Math. J. 15 172-175
  • [3] Crabb MJ(2004)Characterizations of commutativity for Manuscr. Math. 115 195-198
  • [4] Duncan J(2003)-algebras Proc. Am. Math. Soc. 131 3845-3849
  • [5] McGregor CM(1955)On the commutativity of J. Sci. Hiroshima Univ. 18 307-309
  • [6] Jeang J-S(1998)-algebras Aequ. Math. 56 11-17
  • [7] Ko C-C(1951)On a characterizations of commutativity of Am. J. Math. 73 227-232
  • [8] Ji G(1993)-algebras Pac. J. Math. 161 385-392
  • [9] Tomiyama J(2001)A theorem on operator algebras Proc. Am. Math. Soc. 129 983-987
  • [10] Ogasawara T(undefined)On the notion of gyrogroup undefined undefined undefined-undefined