New Results on Linearization of Differential Equations with Piecewise Constant Argument

被引:0
作者
Hai Huang
Yong-Hui Xia
机构
[1] East China Normal University,School of Mathematical Sciences, Shanghai Key Laboratory of PMMP
[2] Zhejiang Normal University,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2020年 / 19卷
关键词
Piecewise constant argument; Differential equation; -Exponential dichotomy; Linearization; Periodicity; 34C25; 34D09; 37C60; 39A12; 93B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we give a version of Grobman–Hartman theorem for the nonautonomous differential equations with piecewise constant argument of generalized type when the nonlinear term is unbounded and its linear system partially satisfies α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential dichotomy. More specifically, we divide the linear system into three subsystems, one of the subsystems is not necessary to admit α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential dichotomy. It was assumed that the whole linear system admits exponential dichotomy in Pinto and Robledo (Z Anal Anwend 37:101–126, 2018), Zou and Shi (J Appl Anal Comput 7(1):309–333, 2017) and Zou et al. (Qual Theory Dyn Syst 18:495–531, 2019). Thus, we extend and improve the previous results in the literature. Moreover, we prove that the conjugated function H(t, x) is also ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-periodic when the systems are ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-periodic.
引用
收藏
相关论文
共 84 条
  • [1] Akhmet MU(2008)Asymptotic behavior of solutions of differential equations with piecewise constant arguments Appl. Math. Lett. 21 951-956
  • [2] Akhmet MU(2007)On the reduction principle for differential equations with piecewise constant argument of generalized type J. Math. Appl. Anal. 336 646-663
  • [3] Akhmet MU(2008)Stability of differential equations with piecewise constant arguments of generalized type Nonlinear Anal. 68 794-803
  • [4] Akhmet MU(2008)Periodic solutions of the system with piecewise constant argument in the critical case Comput. Math. Appl. 56 2034-2042
  • [5] Büyükadali C(2006)A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics J. Differ. Equ. 228 285-310
  • [6] Barreira L(2011)A simple proof of the Grobman–Hartman theorem for the nonuniformly hyperbolic flows Nonlinear Anal. 74 7210-7225
  • [7] Valls C(2018)Stable invariant manifolds for delay equations with piecewise constant argument J. Differ. Equ. Appl. 24 148-163
  • [8] Barreira L(2004)Green’s function and comparison principles for first order differential equations with piecewise constant arguments J. Math. Anal. Appl. 291 690-697
  • [9] Valls C(2016)A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy J. Differ. Equ. Appl. 22 1271-1291
  • [10] Barreira L(2015)Existence and stability of almost periodic solutions to differential equations with piecewise constant argument Electron. J. Differ. Equ. 58 1-15