The Riemann surface of the r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Lambert function

被引:0
|
作者
I. Mező
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
关键词
Lambert ; function; -Lambert function; Riemann surfaces; branch cut; branch point; 30F99; 33E99;
D O I
10.1007/s10474-021-01153-7
中图分类号
学科分类号
摘要
The r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Lambert function is a generalization of the classical Lambert W function which has proven to be useful in physics and other disciplines. In this paper we construct the Riemann surface of this function. It turns out that this surface has some peculiar properties, therefore it might be useful for demonstration purposes, for those who would like to see non-standard examples of Riemann surfaces coming from complex function theory.
引用
收藏
页码:439 / 450
页数:11
相关论文
共 50 条