Construction of MDS self-dual codes over Galois rings

被引:0
作者
Jon-Lark Kim
Yoonjin Lee
机构
[1] University of Louisville,Department of Mathematics
[2] Ewha W. University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2007年 / 45卷
关键词
Self-dual code; Galois ring; MDS code; 94B05; 13H99;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to construct nontrivial MDS self-dual codes over Galois rings. We consider a building-up construction of self-dual codes over Galois rings as a GF(q)-analogue of (Kim and Lee, J Combin Theory ser A, 105:79–95). We give a necessary and sufficient condition on which the building-up construction holds. We construct MDS self-dual codes of lengths up to 8 over GR(32,2), GR(33,2) and GR(34,2), and near-MDS self-dual codes of length 10 over these rings. In a similar manner, over GR(52,2), GR(53,2) and GR(72,2), we construct MDS self-dual codes of lengths up to 10 and near-MDS self-dual codes of length 12. Furthermore, over GR(112,2) we have MDS self-dual codes of lengths up to 12.
引用
收藏
页码:247 / 258
页数:11
相关论文
共 50 条
[1]  
Bannai E(1999)Type II codes, even unimodular lattices and invariant rings IEEE Trans Inform Theory 45 1194-1205
[2]  
Dougherty ST(1972)Codes over certain rings Inform Contr 20 396-404
[3]  
Harada M(1975)Codes over integer residue rings Inform Contr 29 295-300
[4]  
Oura M(1997)Type II codes over IEEE Trans Inform Theory 43 969-976
[5]  
Blake IF(1991)Weight enumerators of self-dual codes IEEE Trans Inform Theory 37 1222-1225
[6]  
Blake IF(1995)Modular and Des Codes Cryptogr 6 21-35
[7]  
Bonnecaze A(1993)-adic cyclic codes J Combin Theory Ser A 62 30-45
[8]  
Solé P(1995)Self-dual codes over the integers modulo 4 IEEE Trans Inform Theory 41 762-768
[9]  
Bachoc C(1999)Shadow codes and weight enumerators J Algebraic Combin 9 233-250
[10]  
Mourrain B(2006)Type II self-dual codes over finite rings and even unimodular lattices Des Codes Cryptogr 41 235-249