Extending KIDs to the Mid-IR for Future Space and Suborbital Observatories

被引:0
作者
J. Perido
J. Glenn
P. Day
A. Fyhrie
H. Leduc
J. Zmuidzinas
C. McKenney
机构
[1] University of Colorado at Boulder,Department of Astrophysics and Planetary Sciences
[2] NASA Jet Propulsion Laboratory (JPL),undefined
[3] California Institute of Technology,undefined
来源
Journal of Low Temperature Physics | 2020年 / 199卷
关键词
Kinetic inductance detector; 10 micron; Mid-infrared; Far-infrared; Astrophysics;
D O I
暂无
中图分类号
学科分类号
摘要
The galaxy evolution probe (GEP) is a concept for a probe-class space observatory to study the physical processes related to star formation over cosmic time. To do so, the mid- and far-infrared (IR) spectra of galaxies must be studied. These mid- and far-IR observations require large multi-frequency arrays, sensitive detectors. Our goal is to develop low NEP aluminum kinetic inductance detectors (KIDs) for wavelengths of 10–400 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} for the GEP and a pathfinder long-duration balloon (GEP-B) that will perform precursor GEP science. KIDs for the lower wavelength range (10–100 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document}) have not been previously implemented. We present an absorber design for KIDs sensitive to wavelengths of 10 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} shown to have around 75–80% absorption efficiency through ANSYS HFSS (high-frequency structure simulator) simulations, challenges that come with optimizing our design to increase the wavelength range, initial tests on our design of fabricated 10 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} KIDs, and theoretical NEP calculations.
引用
收藏
页码:696 / 703
页数:7
相关论文
共 8 条
[1]  
Lger A(1989)Physics of IR emission by interstellar PAH molecules Astron. Astrophys. 216 148-164
[2]  
d’Hendecourt L(1958)Antireflection coatings for germanium and silicon in the infrared J. Opt. Soc. Am. 48 677-214
[3]  
Defourneau D(2012)Superconducting microresonators: physics and applications Annu. Rev. Condens. Matter Phys. 3 169-102
[4]  
Cox JT(2015)Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection Appl. Phys. Lett. 107 093508-undefined
[5]  
Hass G(2016)Development of lumped element kinetic inductance detectors for the w-band J. Low Temp. Phys. 184 97-undefined
[6]  
Zmuidzinas J(undefined)undefined undefined undefined undefined-undefined
[7]  
Cardani L(undefined)undefined undefined undefined undefined-undefined
[8]  
Paiella A(undefined)undefined undefined undefined undefined-undefined