Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4

被引:1
作者
Lilong Xiong
Youlong Xu
Cheng Zhang
Zhengwei Zhang
Jiebin Li
机构
[1] Xi’an Jiaotong University,Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education
来源
Journal of Solid State Electrochemistry | 2011年 / 15卷
关键词
Doping; Capacity retention; Rate capability; Diffusion coefficient; Lithium-ion battery;
D O I
暂无
中图分类号
学科分类号
摘要
Ti-doped spinel LiMn2O4 is synthesized by solid-state reaction. The X-ray photoelectron spectroscopy and X-ray diffraction analysis indicate that the structure of the doped sample is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\hbox{Li}}\left( {{\hbox{M}}{{\hbox{n}}^{3 + }}{\hbox{Mn}}_{1 - x\,}^{4 + }{\hbox{Ti}}_x^{4 + }} \right){\hbox{O}}{}_4 $$\end{document}. The first principle-based calculation shows that the lattice energy increases as Ti doping content increases, which indicates that Ti doping reinforces the stability of the spinel structure. The galvanostatic charge–discharge results show that the doped sample LiMn1.97Ti0.03O4 exhibits maximum discharge capacity of 135.7 mAh g−1 (C/2 rate). Moreover, after 70 cycles, the capacity retention of LiMn1.97Ti0.03O4 is 95.0% while the undoped sample LiMn2O4 shows only 84.6% retention under the same condition. Additionally, as charge–discharge rate increases to 12C, the doped sample delivers the capacity of 107 mAh g−1, which is much higher than that of the undoped sample of only 82 mAh g−1. The significantly enhanced capacity retention and rate capability are attributed to the more stable spinel structure, higher ion diffusion coefficient, and lower charge transfer resistance of the Ti-doped spinel.
引用
收藏
页码:1263 / 1269
页数:6
相关论文
共 214 条
[1]  
Gummow RJ(1994)undefined Solid State Ionics 69 59-67
[2]  
Dekock A(2007)undefined J Power Sources 172 410-415
[3]  
Thackeray MM(2005)undefined J Power Sources 146 217-221
[4]  
Jiang CH(2001)undefined Nature 414 359-367
[5]  
Dou SX(1998)undefined Electrochem Solid State Lett 1 7-9
[6]  
Liu HK(1999)undefined J Power Sources 81–82 554-557
[7]  
Ichihara M(2009)undefined J Phys Chem C 113 14528-14532
[8]  
Zhou HS(2005)undefined Solid State Ionics 176 299-306
[9]  
Katakura K(2003)undefined J Power Sources 119–121 733-737
[10]  
Nishimura S(2003)undefined J Solid State Electrochem 8 7-10