Hybrid mean value of 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2k}$$\end{document}-th power inversion of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}$$\end{document}-functions and general quartic Gauss sums

被引:0
作者
Shikha Singh
Jagmohan Tanti
机构
[1] Central University of Jharkhand,Centre for Applied Mathematics
关键词
Dirichlet ; -functions; Gauss sum; hybrid power mean; asymptotic formula; 11L05;
D O I
10.1007/s12044-018-0460-x
中图分类号
学科分类号
摘要
In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.
引用
收藏
相关论文
共 9 条
[1]  
Hongyan L(2004)On the fourth power mean of the general fourth Gauss sum J. Systems Sci. Math. Sci. 24 289-295
[2]  
Yi Y(2002)On the Advances Math. 31 517-526
[3]  
Zhang W(1993)-th Power mean of Dirichlet Chinese J. Contemporary Math. 14 1-7
[4]  
Zhang W(2002)-functions with the weight of Gauss sums Nagoya Math. J. 167 1-15
[5]  
Zhang W(2002)On the J. Number Theory 92 304-314
[6]  
Deng Y(2017)-th power mean of inversion of Dirichlet J. Number Theory 179 77-87
[7]  
Zhang W(undefined)-function undefined undefined undefined-undefined
[8]  
Zhang W(undefined)A hybrid mean value of the inversion of undefined undefined undefined-undefined
[9]  
Duan R(undefined)-functions and general quadratic Gauss sums undefined undefined undefined-undefined