Fibonacci and Lucas numbers as products of three repdgits in base g

被引:0
作者
Kouèssi Norbert Adédji
Alan Filipin
Alain Togbé
机构
[1] Université D’Abomey-Calavi,Institut de Mathématiques et de Sciences Physiques
[2] University of Zagreb,Faculty of Civil Engineering
[3] Purdue University Northwest,Department of Mathematics and Statistics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Fibonacci numbers; Lucas numbers; Mersenne numbers; Diophantine equations; Repdigit; Linear forms in logarithms; Reduction method; 11B39; 11J86; 11D61; 11D72; 11Y50;
D O I
暂无
中图分类号
学科分类号
摘要
Recall that a repdigit in base g is a positive integer that has only one digit in its base g expansion; i.e., a number of the form a(gm-1)/(g-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(g^m-1)/(g-1)$$\end{document}, for some positive integers m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document}, g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} and 1≤a≤g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a\le g-1$$\end{document}. In the present study, we investigate all Fibonacci or Lucas numbers which are expressed as products of three repdigits in base g. As illustration, we consider the case g=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=10$$\end{document} where we show that the numbers 144 and 18 are the largest Fibonacci and Lucas numbers which can be expressible as products of three repdigits respectively. All this is done using linear forms in logarithms of algebraic numbers.
引用
收藏
页码:4003 / 4021
页数:18
相关论文
共 24 条
[1]  
Adédji KN(2021)Padovan and Perrin numbers which are products of two repdigits in base Results Math. 78 193-610
[2]  
Filipin A(2022)On the solutions of the Diophantine equation J. Number Theory 240 593-1018
[3]  
Togbé A(2006)Classical and modular approaches to exponential Diophantine equations I Fibonacci and Lucas powers. Ann. Math. 163 969-306
[4]  
Adédji KN(2020)Tribonacci numbers that are concatenations of two repdigits RACSAM 114 203-2153
[5]  
Luca F(1998)A generalization of a theorem of Baker and Davenport Quart. J. Math. Oxf. Ser. 2 291-256
[6]  
Togbé A(2019)Fibonacci and Lucas numbers as products of two repdigits Turk. J. Math. 43 2142-188
[7]  
Bugeaud Y(2019)Repdigits as product of two Pell or Pell-Lucas numbers Acta Math. Univ. Comenian. 88 247-254
[8]  
Mignotte M(2021)Repdigits base Bol. Soc. Mat. Mex. 27 70-1269
[9]  
Siksek S(2014) as products of two Pell numbers or Pell-Lucas numbers Ann. Math. Qué. 38 169-undefined
[10]  
Ddamulira M(2000)Linear combinations of factorials and Portugal. Math. 57 243-undefined