On ψH(.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{{\mathcal{H}}}( . )$$\end{document}-operator in weak structure spaces with hereditary classes

被引:0
作者
H. M. Abu-Donia
Rodyna A. Hosny
机构
[1] Zagazig University,Department of Mathematics, Faculty of Science
关键词
Weak structures; -operator; -spaces; -semiopen sets; 54A05; 54A20;
D O I
10.1186/s42787-020-00107-2
中图分类号
学科分类号
摘要
Weak structure space (briefly, wss) has master looks, when the whole space is not open, and these classes of subsets are not closed under arbitrary unions and finite intersections, which classify it from typical topology. Our main target of this article is to introduce ψH(.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{{\mathcal {H}}}(.)$$\end{document}-operator in hereditary class weak structure space (briefly, Hwss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}wss$$\end{document}) (X,w,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, w, {\mathcal {H}})$$\end{document} and examine a number of its characteristics. Additionally, we clarify some relations that are credible in topological spaces but cannot be realized in generalized ones. As a generalization of w-open sets and w-semiopen sets, certain new kind of sets in a weak structure space via ψH(.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{{\mathcal {H}}}(.)$$\end{document}-operator called ψH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{{\mathcal {H}}}$$\end{document}-semiopen sets are introduced. We prove that the family of ψH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{{\mathcal {H}}}$$\end{document}-semiopen sets composes a supra-topology on X. In view of hereditary class H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{0}$$\end{document}, wT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w T_{1}$$\end{document}-axiom is formulated and also some of their features are investigated.
引用
收藏
相关论文
共 32 条
  • [1] Csaszar A(2007)Modification of generalized topologies via hereditary classes Acta Math. Hung. 115 29-36
  • [2] Csaszar A(2011)Weak structures Acta Math. Hung. 131 193-195
  • [3] Modak S(2019)A Note on Mathematical Structures Bol. Soc. Paran. Mat. 37 63-69
  • [4] Noiri T(2012)Modification of weak structures via hereditary classes Appl. Math. Lett. 25 869-872
  • [5] Zahran AM(2014)Note on generalized topological spaces with hereditary classes Bol. Soc. Paran. Mat. 32 89-97
  • [6] El-Saady Kamal(2016)On Commun. Korean Math. Soc. 31 857-868
  • [7] Ghareeb A(1983)-modifications of generalized topologies via hereditary class Indian J. Pure Appl. Math. 14 502-510
  • [8] Renukadevi V(2013)On supra topological spaces Commun. Korean Math. Soc. 28 589-596
  • [9] Vimaladevi P(2020)Dense sets in weak structure and minimal structure Cumhuriyet Sci. J. 41 360-368
  • [10] Al-Omari A(2012)Common properties and approximations of local function and set operator Acta Math. Hung. 137 224-229