Isometries, gaugings and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supergravity decoupling

被引:0
作者
Ignatios Antoniadis
Jean-Pierre Derendinger
P. Marios Petropoulos
Konstantinos Siampos
机构
[1] Laboratoire de Physique Théorique et Hautes Energies,Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics
[2] Sorbonne Universités,Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644
[3] CNRS UMR 7589,undefined
[4] UPMC Paris 6,undefined
[5] University of Bern,undefined
[6] Université Paris-Saclay,undefined
关键词
Compactification and String Models; Supergravity Models; Supersymmetric Effective Theories;
D O I
10.1007/JHEP11(2016)169
中图分类号
学科分类号
摘要
We study off-shell rigid limits for the kinetic and scalar-potential terms of a single N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
引用
收藏
相关论文
共 83 条
[21]  
Haydys A(2001)Hypermultiplets, domain walls and supersymmetric attractors JHEP 05 034-undefined
[22]  
Hitchin N(2001)Self-duality of Kähler surfaces Phys. Rev. D 64 104006-undefined
[23]  
Alekseevsky DV(1984)Positive energy in anti-De Sitter backgrounds and gauged extended supergravity Compos. Math. 51 265-undefined
[24]  
Cortés V(1982)Stability in gauged extended supergravity Phys. Lett. B 115 197-undefined
[25]  
Dyckmanns M(1982) = 2 Annals Phys. 144 249-undefined
[26]  
Mohaupt T(2011) = 2 Phys. Lett. B 703 620-undefined
[27]  
Alexandrov S(2011)HyperKähler Metrics and Supersymmetry JHEP 11 080-undefined
[28]  
Persson D(1987)Locally hermite Einstein, selfdual gravitational instantons Commun. Math. Phys. 108 535-undefined
[29]  
Pioline B(1983) Λ = 0 Acta Phys. Polon. B 14 625-undefined
[30]  
Gunara BE(1991)Nonlinear σ Models and Their Gauging in and Out of Superspace J. Math. Phys. 32 1004-undefined