Isometries, gaugings and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supergravity decoupling

被引:0
作者
Ignatios Antoniadis
Jean-Pierre Derendinger
P. Marios Petropoulos
Konstantinos Siampos
机构
[1] Laboratoire de Physique Théorique et Hautes Energies,Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics
[2] Sorbonne Universités,Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644
[3] CNRS UMR 7589,undefined
[4] UPMC Paris 6,undefined
[5] University of Bern,undefined
[6] Université Paris-Saclay,undefined
关键词
Compactification and String Models; Supergravity Models; Supersymmetric Effective Theories;
D O I
10.1007/JHEP11(2016)169
中图分类号
学科分类号
摘要
We study off-shell rigid limits for the kinetic and scalar-potential terms of a single N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
引用
收藏
相关论文
共 83 条
  • [11] Theisen S(2015)Wall-crossing, Rogers dilogarithm and the QK/HK correspondence J. Geom. Phys. 92 271-undefined
  • [12] Vanhove P(2011) = 2 JHEP 12 027-undefined
  • [13] Galicki K(2013)Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories Class. Quant. Grav. 30 195014-undefined
  • [14] Galicki K(1989)Quaternionic Manifolds for Type II Superstring vacuums of Calabi-Yau Spaces Int. J. Mod. Phys. A 4 2475-undefined
  • [15] de Wit B(1990)Heisenberg symmetry and hypermultiplet manifolds Nucl. Phys. B 332 317-undefined
  • [16] Kleijn B(2016)Gravitational multi-instantons Nucl. Phys. B 905 293-undefined
  • [17] Vandoren S(1978)Killing Vectors in Selfdual, Euclidean Einstein Spaces Phys. Lett. B 78 430-undefined
  • [18] Anguelova L(1982)Stationary Riemannian spacetimes with self-dual curvature J. Math. Phys. 23 1126-undefined
  • [19] Roček M(1984)The Hidden Symmetries of Multicenter Metrics Gen. Rel. Grav. 16 817-undefined
  • [20] Vandoren S(1988)On fermion masses, gradient flows and potential in supersymmetric theories Commun. Math. Phys. 115 267-undefined