Isometries, gaugings and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supergravity decoupling

被引:0
作者
Ignatios Antoniadis
Jean-Pierre Derendinger
P. Marios Petropoulos
Konstantinos Siampos
机构
[1] Laboratoire de Physique Théorique et Hautes Energies,Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics
[2] Sorbonne Universités,Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644
[3] CNRS UMR 7589,undefined
[4] UPMC Paris 6,undefined
[5] University of Bern,undefined
[6] Université Paris-Saclay,undefined
关键词
Compactification and String Models; Supergravity Models; Supersymmetric Effective Theories;
D O I
10.1007/JHEP11(2016)169
中图分类号
学科分类号
摘要
We study off-shell rigid limits for the kinetic and scalar-potential terms of a single N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
引用
收藏
相关论文
共 83 条
  • [1] Bagger J(1983) = 2 Nucl. Phys. B 222 1-undefined
  • [2] Witten E(1981)Geometrical Structure and Ultraviolet Finiteness in the Supersymmetric σ-model Commun. Math. Phys. 80 443-undefined
  • [3] Álvarez-Gaumé L(2011) = 2 JHEP 06 139-undefined
  • [4] Freedman DZ(2003)String loop corrections to the universal hypermultiplet Class. Quant. Grav. 20 5079-undefined
  • [5] Ambrosetti N(1986)Quaternionic Kähler and hyper-Kähler nonlinear σ models Nucl. Phys. B 271 402-undefined
  • [6] Antoniadis I(1987) = 2 Nucl. Phys. B 289 573-undefined
  • [7] Derendinger J-P(2000)Superconformal hypermultiplets Nucl. Phys. B 568 475-undefined
  • [8] Tziveloglou P(2004)Quantum corrections to the universal hypermultiplet and superspace Phys. Rev. D 70 066001-undefined
  • [9] Antoniadis I(2008)On the hyper-Kähler/quaternion Kähler correspondence J. Geom. Phys. 58 293-undefined
  • [10] Minasian R(2013)Quaternionic Kähler metrics associated with special Kähler manifolds Commun. Math. Phys. 324 77-undefined