The Laplacian spectral radius of graphs

被引:0
作者
Jianxi Li
Wai Chee Shiu
An Chang
机构
[1] Zhangzhou Normal University,Department of Mathematics and Information Science
[2] Hong Kong Baptist University,Department of Mathematics
[3] Fuzhou University,Software College/Center of Discrete Mathematics
来源
Czechoslovak Mathematical Journal | 2010年 / 60卷
关键词
graph; Laplacian spectral radius; bounds; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi’s upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
引用
收藏
页码:835 / 847
页数:12
相关论文
共 13 条
[1]  
Haemers W.(1995)Interlacing eigenvalues and graphs Linear Algebra Appl 226–228 593-616
[2]  
Merris R.(1994)Laplacian matrix of graphs: a survey Linear Algebra Appl 197–198 143-176
[3]  
Liu B.(2007)On the largest eigenvalue of non-regular graphs J. Combin. Theory Ser. B. 97 1010-1018
[4]  
Shen J.(1965)Maxima for graphs and a new proof of a theorem of Turán Canad. J. Math. 17 533-540
[5]  
Wang X.(2007)Bounds on graph eigenvalues II Linear Algebra Appl 427 183-189
[6]  
Motzkin T.(2007)Bounds on the (Laplacian) spectral radius of graphs Linear Algebra. Appl. 422 755-770
[7]  
Straus E.(2004)The largest eigenvalue of nonregular graphs J. Combin. Theory Ser. B. 91 143-146
[8]  
Nikiforov V.(2002)The spectral radius of triangle-free graphs Australas. J. Comb. 26 33-39
[9]  
Shi L.(2005)Eigenvector and eigenvalues of non-regular graphs Linear Algebra Appl. 409 79-86
[10]  
Stevanović D.(undefined)undefined undefined undefined undefined-undefined