Deformation prediction of rock cut slope based on long short-term memory neural network

被引:0
作者
Sichang Wang
Tian-le Lyu
Naqing Luo
Pengcheng Chang
机构
[1] Chongqing University of Science and Technology,School of Civil Engineering and Architecture
[2] Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and Mitigation,undefined
[3] Chongqing Ruode Technology Co.,undefined
[4] LTD,undefined
[5] Chongqing Institute of Safety Production Science Co. LTD,undefined
关键词
Cut slope; Slope deformation prediction; Wavelet decomposition; Long short-term memory network; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The cut slope graben is affected by the lithology of strata, rainfall, and man-made excavation, which is a complex geotechnical system. Deformation of a cut slope changes irregularly with time, and, if too large, the deformation causes geological disasters such as landslides. Thus, it is crucial to establish an accurate slope deformation prediction model for control and safety. We used wavelet decomposition (WD) to process the time series of slope deformation to obtain an approximate series and detailed series. Then to predict each sub-series, we used the improved particle swarm optimization (IPSO) algorithm to optimize the number of neurons in the hidden layer, the learning rate, and the number of iterations of a long short-term memory (LSTM) neural network. The prediction results were summed to obtain the final prediction. The hybrid WD-IPSO-LSTM prediction model had a mean absolute error of 0.047, 0.067, and 0.094 at 1, 3, and 6 steps, respectively. These errors were 47.19%, 49.62%, and 57.47% lower than the LSTM-alone model errors. The hybrid WD-IPSO-LSTM prediction model had greater accuracy compared with a back propagation neural network, recurrent neural network, LSTM alone, PSO-LSTM, and IPSO-LSTM in 1-step, 3-step, and 6-step prediction. In addition, our hybrid model for prediction of slope deformation was more realistic and credible compared with other models.
引用
收藏
页码:795 / 805
页数:10
相关论文
共 50 条
  • [1] Deformation prediction of rock cut slope based on long short-term memory neural network
    Wang, Sichang
    Lyu, Tian-le
    Luo, Naqing
    Chang, Pengcheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (03) : 795 - 805
  • [2] Downstream Water Level Prediction of Reservoir based on Convolutional Neural Network and Long Short-Term Memory Network
    Zhang, Zhendong
    Qin, Hui
    Yao, Liqiang
    Liu, Yongqi
    Jiang, Zhiqiang
    Feng, Zhongkai
    Ouyang, Shuo
    Pei, Shaoqian
    Zhou, Jianzhong
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2021, 147 (09)
  • [3] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Tian, Zhongda
    Yu, Xiyan
    Feng, Guokui
    EARTH SCIENCE INFORMATICS, 2025, 18 (04)
  • [4] Long Short-Term Memory Network for Wireless Channel Prediction
    Tong, Xiaoyun
    Sun, Songlin
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 19 - 26
  • [5] Performance prediction of fuel cells using long short-term memory recurrent neural network
    Zheng, Lu
    Hou, Yongping
    Zhang, Tao
    Pan, Xiangmin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 9141 - 9161
  • [6] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [7] Vibration prediction of offshore wind turbines based on long short-term memory network
    Hou, Ge
    Xu, Kui
    Lian, Jijian
    Cai, Ou
    SHIPS AND OFFSHORE STRUCTURES, 2024, 19 (10) : 1582 - 1592
  • [8] Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model
    Song, Xuanyi
    Liu, Yuetian
    Xue, Liang
    Wang, Jun
    Zhang, Jingzhe
    Wang, Junqiang
    Jiang, Long
    Cheng, Ziyan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 186 (186)
  • [9] A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory
    Wu, Junhao
    Wang, Zhaocai
    WATER, 2022, 14 (04)
  • [10] A Water Quality Prediction Method Based on Long Short-Term Memory Neural Network Optimized by Cuckoo Search Algorithm
    Liu, Lingqi
    Zhao, Zhiyao
    Wang, Xiaoyi
    Peng, Linyuan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3205 - 3210