Volume thresholds for quantum fault tolerance

被引:0
|
作者
Vaneet Aggarwal
A. Robert Calderbank
Gerald Gilbert
Yaakov S. Weinstein
机构
[1] Princeton University,Department of Electrical Engineering
[2] Quantum Information Science Group,undefined
来源
Quantum Information Processing | 2010年 / 9卷
关键词
Fault tolerance; Quantum error correcting codes;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce finite-level concatenation threshold regions for quantum fault tolerance. These volume thresholds are regions in an error probability manifold that allow for the implemented system dynamics to satisfy a prescribed implementation inaccuracy bound at a given level of quantum error correction concatenation. Satisfying this condition constitutes our fundamental definition of fault tolerance. The prescribed bound provides a halting condition identifying the attainment of fault tolerance that allows for the determination of the optimum choice of quantum error correction code(s) and number of concatenation levels. Our method is constructed to apply to finite levels of concatenation, does not require that error proabilities consistently decrease from one concatenation level to the next, and allows for analysis, without approximations, of physical systems characterized by non-equiprobable distributions of qubit error probabilities. We demonstrate the utility of this method via a general error model.
引用
收藏
页码:541 / 549
页数:8
相关论文
共 50 条
  • [1] Volume thresholds for quantum fault tolerance
    Aggarwal, Vaneet
    Calderbank, A. Robert
    Gilbert, Gerald
    Weinstein, Yaakov S.
    QUANTUM INFORMATION PROCESSING, 2010, 9 (05) : 541 - 549
  • [2] Benchmarking quantum logic operations relative to thresholds for fault tolerance
    Akel Hashim
    Stefan Seritan
    Timothy Proctor
    Kenneth Rudinger
    Noah Goss
    Ravi K. Naik
    John Mark Kreikebaum
    David I. Santiago
    Irfan Siddiqi
    npj Quantum Information, 9
  • [3] Benchmarking quantum logic operations relative to thresholds for fault tolerance
    Hashim, Akel
    Seritan, Stefan
    Proctor, Timothy
    Rudinger, Kenneth
    Goss, Noah
    Naik, Ravi K.
    Kreikebaum, John Mark
    Santiago, David I.
    Siddiqi, Irfan
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [4] Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers
    Plenio, M. B.
    Virmani, S.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] Fault-tolerance thresholds for code conversion schemes with quantum Reed-Muller codes
    Luo, Lan
    Ma, Zhi
    Lin, Dongdai
    Wang, Hong
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [6] Practical Quantum Fault Tolerance
    Gilbert, G.
    Weinstein, Y. S.
    Aggarwal, V.
    Calderbank, A. R.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [7] Fault-tolerance thresholds for the surface code with fabrication errors
    Auger, James M.
    Anwar, Hussain
    Gimeno-Segovia, Mercedes
    Stace, Thomas M.
    Browne, Dan E.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [8] QUANTUM COMPUTING Efficient fault tolerance
    Gottesman, Daniel
    NATURE, 2016, 540 (7631) : 44 - 45
  • [9] Constant Overhead Quantum Fault Tolerance with Quantum Expander Codes
    Fawzi, Omar
    Grospellier, Antoine
    Leverrier, Anthony
    COMMUNICATIONS OF THE ACM, 2021, 64 (01) : 106 - 114
  • [10] Unitary Reflection Groups for Quantum Fault Tolerance
    Planat, Michel
    Kibler, Maurice
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (09) : 1759 - 1770