Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations
被引:0
|
作者:
Johannes Wagner
论文数: 0引用数: 0
h-index: 0
机构:GFZ German Research Centre for Geosciences,Institute of Materials Science
Johannes Wagner
Omar Adjaoud
论文数: 0引用数: 0
h-index: 0
机构:GFZ German Research Centre for Geosciences,Institute of Materials Science
Omar Adjaoud
Katharina Marquardt
论文数: 0引用数: 0
h-index: 0
机构:GFZ German Research Centre for Geosciences,Institute of Materials Science
Katharina Marquardt
Sandro Jahn
论文数: 0引用数: 0
h-index: 0
机构:GFZ German Research Centre for Geosciences,Institute of Materials Science
Sandro Jahn
机构:
[1] GFZ German Research Centre for Geosciences,Institute of Materials Science
[2] Technische Universität Darmstadt,Bayerisches Geoinstitut, BGI
[3] University of Bayreuth,Institute of Geology and Mineralogy
[4] University of Cologne,undefined
来源:
Contributions to Mineralogy and Petrology
|
2016年
/
171卷
关键词:
Forsterite;
Grain boundary;
Self-diffusion;
Mg;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Diffusion rates and associated deformation behaviour in olivine have been subjected to many studies, due to the major abundance of this mineral group in the Earth’s upper mantle. However, grain boundary (GB) transport studies yield controversial results. The relation between transport rate, energy, and geometry of individual GBs is the key to understand transport in aggregates with lattice preferred orientation that favours the presence and/or alignment of specific GBs over random ones in an undeformed rock. In this contribution, we perform classical molecular dynamics simulations of a series of symmetric and one asymmetric tilt GBs of Mg2SiO4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Mg}_2\hbox {SiO}_4$$\end{document} forsterite, ranging from 9.58° to 90° in misorientation and varying surface termination. Our emphasis lies on unravelling structural characteristics of high- and low-angle grain boundaries and how the atomic structure influences grain boundary excess volume and self-diffusion processes. To obtain diffusion rates for different GB geometries, we equilibrate the respective systems at ambient pressure and temperatures from 1900 to 2200 K and trace their evolution for run durations of at least 1000 ps. We then calculate the mean square displacement of the different atomic species within the GB interface to estimate self-diffusion coefficients in the individual systems. Grain boundary diffusion coefficients for Mg, Si and O range from 10-18\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{-18}$$\end{document} to 10-21m3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{-21}\,\hbox {m}^3$$\end{document}/s, falling in line with extrapolations from lower temperature experimental data. Our data indicate that higher GB excess volumes enable faster diffusion within the GB. Finally, we discuss two types of transport mechanisms that may be distinguished in low- and high-angle GBs.