Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic

被引:1
|
作者
Thiago Assis Dutra
Rafael Thiago Luiz Ferreira
Hugo Borelli Resende
Alessandro Guimarães
机构
[1] ITA - Instituto Tecnológico de Aeronáutica,GPMA
[2] IPT - Instituto de Pesquisas Tecnológicas, Research Group on Additive Manufacturing
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2019年 / 41卷
关键词
3D printing of composite materials; Continuous carbon fiber; Experimental characterization; Asymptotic homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
The present work investigates the mechanical properties of continuous carbon fiber-reinforced thermoplastic by testing composite specimens which were manufactured using an innovative process based on the fused filament fabrication (FFF, analogous to FDM®). The adopted testing procedures and their results are presented, as well as an introduction to the manufacturing process, which is patented by Markforged Inc. The experimental mechanical properties (stiffness and strength) of the composite specimens, measured in tensile (longitudinal and transverse), compression (longitudinal) and in-plane shear are reported. The asymptotic homogenization technique is applied in order to predict the elastic mechanical properties of the carbon fiber-reinforced lamina. In contrast to recent studies, this investigation has revealed that considering Nylon as the thermoplastic matrix embedding the continuous fiber consistently underpredicts the transverse and in-plane shear elastic properties of the reinforced laminae. These results suggest that the composition of the thermoplastic resin is not exactly the same for the unreinforced and reinforced filaments. Additionally, cross-sectional micrographs of specimens are analyzed in detail and considerable insight has been gained concerning the thermoplastic resin of reinforced filaments.
引用
收藏
相关论文
共 50 条
  • [1] Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic
    Dutra, Thiago Assis
    Luiz Ferreira, Rafael Thiago
    Resende, Hugo Borelli
    Guimaraes, Alessandro
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (03)
  • [2] Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites
    Li, Lijun
    Liu, Wenyao
    Sun, Lingyu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
  • [3] Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar
    Li, Yeou-Fong
    Tsai, Pei-Jen
    Syu, Jin-Yuan
    Lok, Man-Hoi
    Chen, Huei-Shiung
    FIBERS, 2023, 11 (12)
  • [4] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    De la Fuente, Andres
    Castillo, Rodrigo
    Onate, Angelo
    Hermosilla, Rodolfo
    Escudero, Benjamin
    Sepulveda, Joaquin
    Vargas-Silva, Gustavo
    Melendrez, Manuel F.
    Tuninetti, Victor
    Medina, Carlos
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4): : 1575 - 1583
  • [5] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    Andrés De la Fuente
    Rodrigo Castillo
    Angelo Oñate
    Rodolfo Hermosilla
    Benjamín Escudero
    Joaquín Sepúlveda
    Gustavo Vargas-Silva
    Manuel F. Meléndrez
    Víctor Tuninetti
    Carlos Medina
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 1575 - 1583
  • [6] Mechanism based failure of 3D-printed continuous carbon fiber reinforced thermoplastic composites
    Dutra, Thiago Assis
    Ferreira, Rafael Thiago Luiz
    Resende, Hugo Borelli
    Blinzler, Brina Jane
    Asp, Leif E.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213
  • [7] Mechanical dependence of 3D-printed thermoplastic polyurethane reinforced with minor continuous carbon fibres
    Hao, Mengyuan
    Wang, Jun
    Wang, Runguo
    Gong, Min
    Zhang, Liang
    Wang, Dongrui
    Lu, Yonglai
    Zhang, Liqun
    Lin, Xiang
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [8] Anisotropic microstructure dependent mechanical behavior of 3D-printed basalt fiber-reinforced thermoplastic composites
    Yu, Siwon
    Bale, Hrishikesh
    Park, Seunggyu
    Hwang, Jun Yeon
    Hong, Soon Hyung
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [9] Progressive damage simulation for a 3D-printed curvilinear continuous carbon fiber-reinforced thermoplastic based on continuum damage mechanics
    Ichihara, Naruki
    Ueda, Masahito
    Urushiyama, Yuta
    Todoroki, Akira
    Matsuzaki, Ryosuke
    Hirano, Hoshiyasu
    ADVANCED COMPOSITE MATERIALS, 2020, 29 (05) : 459 - 474
  • [10] Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites
    Qiao, Haiyu
    Li, Qian
    Chen, Yani
    Liu, Yayun
    Jiang, Ning
    Wang, Chuanyang
    MATERIALS, 2025, 18 (03)