The possibility of supercritical fluid regeneration for Pt-Re/γ-Al2O3 industrial reforming catalyst in O3/CO2 mixtures

被引:4
作者
Gaydamaka S.N. [1 ]
Timofeev V.V. [2 ]
Lemenovskii D.A. [2 ]
Kardashev S.V. [2 ]
Parenago O.O. [1 ]
Bagratashvili V.N. [3 ]
Sergienko S.A. [4 ]
Brusova G.P. [2 ]
Lunin V.V. [2 ]
机构
[1] Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow
[2] Moscow State University, Moscow
[3] Institute of Laser and Information Technologies, Russian Academy of Sciences, Troitsk, Moscow oblast
[4] Joint Stock CompanyPromkataliz, Ryazan
基金
俄罗斯基础研究基金会;
关键词
Hydrocarbon reforming catalysts; Ozone; Supercritical carbon dioxide;
D O I
10.1134/S2070050413030033
中图分类号
学科分类号
摘要
This work continues a cycle of studies aimed at developing new approaches to the regeneration of coked bimetallic heterogeneous catalysts. The activities of three Ru-125 (Pt-Re/γ-Al2O3) industrial reform- ing catalyst samples (fresh catalyst (A), catalyst removed from an industrial reactor (B), and sample B after treating it with ozone in supercritical carbon dioxide (SC-CO2) (C)) are been compared in the reforming of n-heptane. It is established that sample B is deactivated appreciably: the conversion of n-heptane and the yield of reforming products are generally much lower than on the fresh catalyst. After treating it with an O 3/SC-CO2 mixture, the conversion of n-heptane not only returns to the level of fresh sample A, but also exceeds it by a factor of 1.2. The qualitative composition of the products obtained on samples A, B, and C is nearly the same, but there are some changes in the quantitative ratio of certain products. Regeneration with ozone is found to be promising for further development and scaling. © Pleiades Publishing, Ltd., 2013.
引用
收藏
页码:216 / 222
页数:6
相关论文
共 15 条
  • [1] Gaydamaka S.N., Timofeev V.V., Guryev Yu.V., Lemenovskii D.A., Brusova G.P., Parenago O.O., Bagratashvili V.N., Lunin V.V., Sverkhkrit. Flyuidy. Teor. Prakt., 5, 3, (2010)
  • [2] Lokteva E.S., Lazhko A.E., Golubina E.V., Timofeev V.V., Naumkin A.V., Yagodovskaya T.V., Gaidamaka S.N., Lunin V.V., J. Supercrit. Fluids, 58, 2, (2011)
  • [3] Timofeev V.V., Lemenovskii D.A., Zhitnev Yu.N., Lunin V.V., Avdeev M.V., Popov V.K., Bagratashvili V.N., Zh. Fiz. Khim., 77, 8, (2003)
  • [4] Lemenovskii D.A., Yurin S.A., Timofeev V.V., Popov V.K., Bagratashvili V.N., Gorbatyi Yu.E., Brusova G.P., Lunin V.V., Sverkhkrit. Flyuidy. Teor. Prakt., 2, 4, (2007)
  • [5] Masagutov R.M., Morozov B.F., Kutepov B.I., Regeneratsiya Katalizatorov v Neftepererabotke i Neftekhimii (Regeneration of Catalysts in Oil Refining and Petrochemistry), (1987)
  • [6] Buyanov R.A., Zakoksovyvanie i Regeneratsiya Kataliza Torov Degidrirovaniya Pri Poluchenii Monomerov (Coking and Regeneration of Dehydrogenation Catalysts in the Synthesis of Monomers), (1968)
  • [7] Pieck C.L., Verderone R.J., Jablonski E.L., Parera J.M., Appl. Catal., 55, 1, (1989)
  • [8] Pieck C.L., Jablonski E.L., Parera J.M., Frety R., Lefebre F., Ind. Eng. Chem. Res., 31, 4, (1992)
  • [9] Pieck C.L., Parera J.M., Ind. Eng. Chem. Res., 28, 12, (1989)
  • [10] Guryev Y.V., Ivanova I.I., Lunin V.V., Grunert W., Van Den Berg M.W.E., Appl. Catal. A: Gen., 329, (2007)