The distribution function for the maximal height of N non-intersecting Bessel paths

被引:0
|
作者
Dan Dai
Luming Yao
机构
[1] City University of Hong Kong,Department of Mathematics
[2] Fudan University,School of Mathematical Sciences
来源
The Ramanujan Journal | 2023年 / 61卷
关键词
Non-intersecting Bessel paths; Maximum distribution; Orthogonal polynomials; Multiple orthogonal polynomials; Hankel determinant; Primary 33C47; 60J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider N non-intersecting Bessel paths starting at x=a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=a\ge 0$$\end{document}, and conditioned to end at the origin x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document}. We derive the explicit formula of the distribution function for the maximum height. Depending on the starting point a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} or a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document}, the distribution functions are also given in terms of the Hankel determinants associated with the multiple discrete orthogonal polynomials or discrete orthogonal polynomials, respectively.
引用
收藏
页码:111 / 134
页数:23
相关论文
共 42 条
  • [11] Extreme statistics of non-intersecting Brownian paths
    Gia Bao Nguyen
    Remenik, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [12] Multiplicative functionals on ensembles of non-intersecting paths
    Borodin, Alexei
    Corwin, Ivan
    Remenik, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 28 - 58
  • [13] Non-intersecting paths, random tilings and random matrices
    Kurt Johansson
    Probability Theory and Related Fields, 2002, 123 : 225 - 280
  • [14] Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths
    Kuijlaars, A. B. J.
    Roman, P.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (11) : 2048 - 2077
  • [15] The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths
    Delvaux, Steven
    Veto, Balint
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2015, 4 (02)
  • [16] Non-intersecting paths, random tilings and random matrices
    Johansson, K
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (02) : 225 - 280
  • [17] Symmetrized models of last passage percolation and non-intersecting lattice paths
    Forrester, Peter J.
    Rains, Eric M.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) : 833 - 855
  • [18] Symmetrized Models of Last Passage Percolation and Non-Intersecting Lattice Paths
    Peter J. Forrester
    Eric M. Rains
    Journal of Statistical Physics, 2007, 129 : 833 - 855
  • [19] Return polynomials for non-intersecting paths above a surface on the directed square lattice
    Brak, R
    Essam, JW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 10763 - 10782
  • [20] Fast convergence to an invariant measure for non-intersecting 3-dimensional Brownian paths
    Lawler, Gregory F.
    Vermesi, Brigitta
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 9 (02): : 717 - 738