Continuum Limit of the Volterra Model, Separation of Variables and Non-Standard Realizations of the Virasoro Poisson Bracket

被引:0
作者
O. Babelon
机构
[1] Université Pierre et Marie Curie-Paris6; CNRS; Université Denis Diderot-Paris7,Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Unité Mixte de Recherche (UMR 7589)
来源
Communications in Mathematical Physics | 2006年 / 266卷
关键词
Meromorphic Function; Poisson Bracket; Continuum Limit; Spectral Curve; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Volterra model, equipped with the Faddeev-Takhtajan Poisson bracket provides a lattice version of the Virasoro algebra. The Volterra model being integrable, we can express the dynamical variables in terms of the so-called separated variables. Taking the continuum limit of these formulae, we obtain the Virasoro generators written as determinants of infinite matrices, the elements of which are constructed with a set of points lying on an infinite genus Riemann surface. The coordinates of these points are separated variables for an infinite set of Poisson commuting quantities including L0. The scaling limit of the eigenvector can also be calculated explicitly, so that the associated Schroedinger equation is in fact exactly solvable.
引用
收藏
页码:819 / 862
页数:43
相关论文
共 27 条
  • [1] Gervais J.L.(1985)Transport matrices associated with the Virasoro algebra Phys. Lett. B160 279-398
  • [2] Bazhanov V.(1996)Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation Commun. Math. Phys. 177 381-96
  • [3] Lukyanov S.(1975)A complete solution of the periodic Toda problem Proc. Nat. Acad. Sci., USA 72 87-81
  • [4] Zamolodchikov A.(1976)The spectrum of Jacobi matrices Invent. Math. 37 45-1125
  • [5] Kac M.(1987)Miura transformation on the lattice Zapiski.Nauch.Semin. LOMI 74 24-219
  • [6] Moerbeke P.(1990)Exchange formula and lattice deformation of the Virasoro algebra Physics Letters 238B 234-27
  • [7] van Moerbeke P.(1993)Abelian current algebra and the Virasoro algebra on the lattice Phys. Lett. B315 311318-77
  • [8] Volkov A.(2004)Shift Operator for Nonabelian Lattice Current Algebra Publ. Res. Inst. Math. Sci. Kyoto 40 1113-316
  • [9] Babelon O.(2001)Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality Commun. Math. Phys. 219 199-2144
  • [10] Faddeev L.D.(1984)Novel triangle relation and absence of tachyon in Liouville string field theory Nucl. Phys. B238 100 125-274