Topological properties of locally finite covering rough sets and K-topological rough set structures

被引:0
作者
Sang-Eon Han
机构
[1] Jeonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
来源
Soft Computing | 2021年 / 25卷
关键词
Covering rough set; Neighborhood system; Locally finite; Covering approximation space; LFC-space; -rough set; -topological rough set; Duality; Closure; Interior; Digital topological rough set; LFC-system; -topological rough set;
D O I
暂无
中图分类号
学科分类号
摘要
The paper initially proves that locally finite covering (LFC-, for short) rough set structures are interior and closure operators. To be precise, given an LFC-space (U,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U ,\mathbf{C})$$\end{document}, we prove that the lower H-rough set operator H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{*}$$\end{document} is an interior operator and the upper H-rough set operator H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{*}$$\end{document} is a closure operator. Besides, we prove a duality of the concept approximations (H∗,H∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H_{*}, H^{*})$$\end{document} and investigate many theoretical and mathematical properties of the H-rough set operators. After pointing out that Khalimsky (K-, for brevity) topological rough set operators have their own features, we prove that the K-topological lower (resp. upper) approximation operator is not an interior (resp. closure) operator from the viewpoint of K-topology. Besides, we intensively investigate theoretical and mathematical properties of the K-topological rough set operators. This research area can be considered as a part of geometric-based rough set theory. These obtained results can promote the studies of rough set theory associated with information geometry, object classification, artificial or computational intelligence, and so on. In the present paper, each of the sets U, C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{C}$$\end{document} and X(⊆U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\subseteq U)$$\end{document} need not be finite.
引用
收藏
页码:6865 / 6877
页数:12
相关论文
共 82 条
[1]  
Alexandorff P(1937)Extensions and intentions in the rough set theory Diskrete Räume. Mat Sb 2 501-518
[2]  
Bonikowski Z(1998)Neighborhood operators for covering-based rough sets Inf Sci 107 149-167
[3]  
Bryniarski E(2006)Topological characterizations of covering for special covering-based upper approximation operators Inf Sci 336 21-44
[4]  
Wybraniec-Skardowska U(2012)The relationship among different covering approximations Inf Sci 204 70-81
[5]  
D’eer L(2013)Topologies on Inf Sci 250 178-183
[6]  
Restrepo M(2019) which are not homeomorphic to the n-dimensional Khalimsky topological space Mathematics 7 1072-561
[7]  
Cornelis C(2008)Equivalent Inf Sci 178 550-6328
[8]  
Gómez J(2017)-covering and generalized digital lifting Filomat 31 6313-144
[9]  
Ge X(2017)Topological graphs based on a new topology on Comput Appl Math 36 127-437
[10]  
Bai X(2019) and its applications Inf Sci 480 420-248