On fast greedy block Kaczmarz methods for solving large consistent linear systems

被引:0
作者
A.-Qin Xiao
Jun-Feng Yin
Ning Zheng
机构
[1] Tongji University,School of Mathematical Sciences
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Linear systems; Kaczmarz method; Modified greedy strategies; Average block; Convergence property; 65F10; 65F20; 15A06;
D O I
暂无
中图分类号
学科分类号
摘要
A fast greedy block Kaczmarz method combined with general greedy strategy and average technique are proposed for solving large consistent linear systems. Theoretical analysis of the convergence of the proposed method is given in detail. Numerical experiments show that the proposed methods are efficient and faster than the existing methods.
引用
收藏
相关论文
共 35 条
[1]  
Bai Z-Z(2018)On greedy randomized Kaczmarz method for solving large sparse linear systems SIAM J Sci Comput 40 A592-A606
[2]  
Wu W-T(2018)On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems Appl Math Lett 83 21-26
[3]  
Bai Z-Z(2019)On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems Linear Algebra Appl 578 225-250
[4]  
Wu W-T(2022)On a fast deterministic block Kaczmarz method for solving large-scale linear systems Numer Algorithms 89 1007-1029
[5]  
Bai Z-Z(2011)The University of Florida sparse matrix collection ACM Trans Math Softw 38 1-25
[6]  
Wu W-T(2021)Kaczmarz-type inner-iteration preconditioned flexible GMRES methods for consistent linear systems SIAM J Sci Comput 43 S345-S366
[7]  
Chen J-Q(1980)Block-iterative methods for consistent and inconsistent linear equations Numer Math 35 1-12
[8]  
Huang Z-D(2008)Image reconstruction from a small number of projections Inverse Probl 24 045011-634
[9]  
Davis TA(2021)Structure preserving quaternion generalized minimal residual method SIAM J Matrix Anal Appl 42 616-357
[10]  
Hu Y-F(1937)Angenäherte auflösung von systemen linearer gleichungen Bull Int Acad Pol Sic Lett A 35 355-1452