Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain

被引:0
作者
Jie Li
Kangsheng Liu
机构
[1] Zhejiang University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2017年 / 48卷
关键词
Well-posedness; Korteweg-de Vries-Burgers equation; nonhomogeneous boundary; semigroup; nonlinear interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,we consider the Korteweg-de Vries-Burgers equation on a finite domain with initial value and nonhomogeneous boundary conditions. This particular problem arises in the theory of ferroelectricity. We first get the local well-posedness of the problem, and then under the help of the local result, we use nonlinear interpolation to have the global well-posedness of the problem.
引用
收藏
页码:91 / 116
页数:25
相关论文
共 50 条
  • [31] Stratonovich-Khasminskii averaging principle for multiscale random Korteweg-de Vries-Burgers equation
    Gao, Peng
    NONLINEARITY, 2023, 36 (11) : 6124 - 6151
  • [32] Painleve analysis and exact solutions of two dimensional Korteweg-de Vries-Burgers equation
    Joy, MP
    PRAMANA-JOURNAL OF PHYSICS, 1996, 46 (01): : 1 - 8
  • [33] Modelling and nonlinear boundary stabilization of the modified generalized Korteweg-de Vries-Burgers equation
    Smaoui, N.
    Chentouf, B.
    Alalabi, A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [34] Observer-based H∞ control of a stochastic Korteweg-de Vries-Burgers equation
    Kang, Wen
    Wang, Xiao-Nan
    Wu, Kai-Ning
    Li, Qing
    Liu, Zhijie
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (12) : 5943 - 5961
  • [35] Korteweg-de Vries-Burgers equation on a half-line with large initial data
    Hayashi, N
    Kaikina, EI
    Paredes, HFR
    JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (03) : 319 - 347
  • [36] Inverse source problems for the Korteweg-de Vries-Burgers equation with mixed boundary conditions
    Montoya, Cristhian
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (06): : 777 - 794
  • [37] INVERSE OPTIMAL DYNAMIC BOUNDARY CONTROL FOR UNCERTAIN KORTEWEG-DE VRIES-BURGERS EQUATION
    Cai, Xiushan
    Lin, Yuhang
    Lin, Cong
    Liu, Leipo
    KYBERNETIKA, 2024, 60 (06) : 797 - 818
  • [38] H1 solutions for a modified Korteweg-de Vries-Burgers type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (02) : 724 - 739
  • [39] Nonlinear Adaptive Boundary Control of the Modified Generalized Korteweg-de Vries-Burgers Equation
    Chentouf, B.
    Smaoui, N.
    Alalabi, A.
    COMPLEXITY, 2020, 2020
  • [40] Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane
    Bona, Jerry L.
    Sun, S. M.
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06): : 1145 - 1185