Mixing of the Exclusion Process with Small Bias

被引:0
作者
David A. Levin
Yuval Peres
机构
[1] University of Oregon,Department of Mathematics, Fenton Hall
[2] Microsoft Research,undefined
来源
Journal of Statistical Physics | 2016年 / 165卷
关键词
Biased exclusion process; Mixing time; Pre-cutoff;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the mixing behavior of the biased exclusion process on a path of length n as the bias βn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _n$$\end{document} tends to 0 as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}. We show that the sequence of chains has a pre-cutoff, and interpolates between the unbiased exclusion and the process with constant bias. As the bias increases, the mixing time undergoes two phase transitions: one when βn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _n$$\end{document} is of order 1 / n, and the other when βn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _n$$\end{document} is order logn/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n/n$$\end{document}.
引用
收藏
页码:1036 / 1050
页数:14
相关论文
共 7 条
  • [1] Benjamini I(2005)Mixing times of the biased card shuffling and the asymmetric exclusion process Trans. Am. Math. Soc. 357 3013-3029
  • [2] Berger N(2016)Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion Ann. Probab. 44 1426-1487
  • [3] Hoffman C(2003)Glauber dynamics on the cycle is monotone Probab. Theory Relat. Fields 127 177-185
  • [4] Mossel E(2004)Mixing times of Lozenge tiling and card shuffling Markov chains Ann. Appl. Probab. 14 274-325
  • [5] Lacoin H(undefined)undefined undefined undefined undefined-undefined
  • [6] Nacu S(undefined)undefined undefined undefined undefined-undefined
  • [7] Wilson DB(undefined)undefined undefined undefined undefined-undefined