On a new generalization of Fibonacci hybrid numbers

被引:0
|
作者
Elif Tan
N. Rosa Ait-Amrane
机构
[1] Ankara University,Department of Mathematics, Faculty of Science
[2] Faculty of Mathematics,undefined
[3] RECITS Laboratory,undefined
[4] USTHB,undefined
来源
Indian Journal of Pure and Applied Mathematics | 2023年 / 54卷
关键词
Fibonacci sequence; Bi-periodic Horadam sequence; Horadam hybrid number; Hybrid number; 11B39; 05A15; 11K31;
D O I
暂无
中图分类号
学科分类号
摘要
The hybrid numbers were introduced by Ozdemir [9] as a new generalization of complex, dual, and hyperbolic numbers. A hybrid number is defined by k=a+bi+cϵ+dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=a+bi+c\epsilon +dh$$\end{document}, where a, b, c, d are real numbers and i,ϵ,h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i,\epsilon ,h$$\end{document} are operators such that i2=-1,ϵ2=0,h2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i^{2}=-1,\epsilon ^{2}=0,h^{2}=1$$\end{document} and ih=-hi=ϵ+i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ih=-hi=\epsilon +i$$\end{document}. This work is intended as an attempt to introduce the bi-periodic Horadam hybrid numbers which generalize the classical Horadam hybrid numbers. We give the generating function, the Binet formula, and some basic properties of these new hybrid numbers. Also, we investigate some relationships between generalized bi-periodic Fibonacci hybrid numbers and generalized bi-periodic Lucas hybrid numbers.
引用
收藏
页码:428 / 438
页数:10
相关论文
共 49 条