Sum-free sets in abelian groups

被引:0
作者
Vsevolod F. Lev
Tomasz Łuczak
Tomasz Schoen
机构
[1] The Hebrew University of Jerusalem Givat Ram,Institute of Mathematics
[2] Adam Mickiewicz University,Department of Mathematics
[3] Christian Albrecht University,Department of Mathematics
[4] Adam Mickiewicz University,Department of Discrete Mathematics
来源
Israel Journal of Mathematics | 2001年 / 125卷
关键词
ABELIAN Group; Cyclic Subgroup; Proper Subgroup; Main Lemma; Order Component;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there is an absolute constant δ>0 such that the number of sum-free subsets of any finite abelian groupG is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {2^{\nu (G)} - 1} \right)2^{\left| G \right|/2} + O\left( {2^{(1/2 - \delta )\left| G \right|} } \right)$$ \end{document} whereν(G) is the number of even order components in the canonical decomposition ofG into a direct sum of its cyclic subgroups, and the implicit constant in theO-sign is absolute.
引用
收藏
页码:347 / 367
页数:20
相关论文
共 5 条
  • [1] Alon N.(1991)Independent sets in regular graphs and sum-free subsets of finite groups Israel Journal of Mathematics 73 247-256
  • [2] Bilu Y.(1998)Sum-free sets and related sets Combinatorica 18 449-459
  • [3] Kemperman J. H. B.(1960)On small sumsets in Abelian group Acta Mathematica 103 63-88
  • [4] Kneser M.(1953)Abschtzung der asymptotischen Dichte von Summenmengen Mathematische Zeitschrift 58 459-484
  • [5] Kneser M.(1955)Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen Mathematische Zeitschrift 61 429-434