Improving 3N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3N$$\end{document} Circuit Complexity Lower Bounds

被引:0
作者
Magnus Gausdal Find
Alexander Golovnev
Edward A. Hirsch
Alexander S. Kulikov
机构
[1] Georgetown University,Department of Computer Science
[2] Ariel University,undefined
[3] JetBrains Research,undefined
关键词
Boolean circuits; lower bounds; dispersers; 68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.);
D O I
10.1007/s00037-023-00246-9
中图分类号
学科分类号
摘要
While it can be easily shown by counting that almost all Boolean predicates of n variables have circuit size Ω(2n/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega(2^n/n)$$\end{document}, we have no example of an NP function requiring even a superlinear number of gates. Moreover, only modest linear lower bounds are known. Until recently, the strongest known lower bound was 3n-o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n - o(n)$$\end{document} presented by Blum in 1984. In 2011, Demenkov and Kulikov presented a much simpler proof of the same lower bound, but for a more complicated function —an affine disperser for sublinear dimension. Informally, this is a function that is resistant to any n-o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n - o(n)$$\end{document} affine substitutions. In 2011, Ben-Sasson and Kopparty gave an explicit construction of such a function. The proof of the lower bound basically goes by showing that for any circuit there exists an affine hyperplane where the function complexity decreases at least by three gates. In this paper, we prove the following two extensions.
引用
收藏
相关论文
empty
未找到相关数据