While it can be easily shown by counting that almost all
Boolean predicates of n variables have circuit size Ω(2n/n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega(2^n/n)$$\end{document}, we have
no example of an NP function requiring even a superlinear number of gates. Moreover, only modest linear lower bounds are known. Until
recently, the strongest known lower bound was 3n-o(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3n - o(n)$$\end{document} presented
by Blum in 1984. In 2011, Demenkov and Kulikov presented a much simpler proof of the same lower bound, but for a more complicated function
—an affine disperser for sublinear dimension. Informally, this is a function that is resistant to any n-o(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n - o(n)$$\end{document} affine substitutions. In 2011,
Ben-Sasson and Kopparty gave an explicit construction of such a function. The proof of the lower bound basically goes by showing that for any circuit there exists an affine hyperplane where the function complexity
decreases at least by three gates. In this paper, we prove the following two extensions.