The geometry of integrable and superintegrable systems

被引:0
作者
A. Ibort
G. Marmo
机构
[1] Università di Napoli “Federico II”,Dipartimento di Scienze Fisiche
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas
来源
Theoretical and Mathematical Physics | 2012年 / 172卷
关键词
integrable system; superintegrable system; energy-period theorem; geometric structure;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the automorphism group of the geometry of an integrable system. The geometric structure used to obtain it is generated by a normal-form representation of integrable systems that is independent of any additional geometric structure like symplectic, Poisson, etc. Such a geometric structure ensures a generalized toroidal bundle on the carrier space of the system. Noncanonical diffeomorphisms of this structure generate alternative Hamiltonian structures for completely integrable Hamiltonian systems. The energy-period theorem for dynamical systems implies the first nontrivial obstruction to the equivalence of integrable systems.
引用
收藏
页码:1109 / 1117
页数:8
相关论文
共 29 条
[1]  
Klein F.(1893)undefined Bull. Amer. Math. Soc. 2 215-249
[2]  
Banyaga A.(1986)undefined Proc. Amer. Math. Soc. 98 113-118
[3]  
Banyaga A.(1988)undefined J. Differ. Geom. 28 23-35
[4]  
Filippo S. d.(1989)undefined Ann. Inst. H. Poincaré 50 205-218
[5]  
Landi G.(1934)undefined J. Math. Phys. 13 18-40
[6]  
Marmo G.(1993)undefined Inverse Problems 9 443-467
[7]  
Vilasi G.(2010)undefined Riv. Nuovo Cimento 33 401-590
[8]  
Levi-Civita T.(1982)undefined Bull. Lond. Math. Soc. 14 1-15
[9]  
Giordano M.(1997)undefined Phys. Scripta 55 528-541
[10]  
Marmo G.(1997)undefined Phys. Rev. A 56 1126-1130