Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity

被引:0
作者
Joaquim Gomis
Diego Hidalgo
Patricio Salgado-Rebolledo
机构
[1] Universitat de Barcelona,Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB)
[2] Centro de Estudios Científicos (CECs),Departamento de Física
[3] Universidad de Concepción,Instituto de Ciencias Físicas y Matemáticas
[4] Universidad Austral de Chile,undefined
[5] Université Libre de Bruxelles and International Solvay Institutes,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
2D Gravity; Classical Theories of Gravity; Space-Time Symmetries; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the non-relativistic and Carrollian versions of Jackiw-Teitelboim gravity. In the second order formulation, there are no divergences in the non-relativistic and Carrollian limits. Instead, in the first order formalism, some divergences can be avoided by starting from a relativistic BF theory with (A)dS2 × ℝ gauge algebra. We show how to define the boundary duals of the gravity actions using the method of non-linear realisations and suitable Inverse Higgs constraints. In particular, the non-relativistic version of the Schwarzian action is constructed in this way. We derive the asymptotic symmetries of the theory, as well as the corresponding conserved charges and Newton-Cartan geometric structure. Finally, we show how the same construction applies to the Carrollian case.
引用
收藏
相关论文
共 116 条
  • [21] Chaturvedi P(1989)undefined Phys. Lett. B 228 75-undefined
  • [22] Gu Y(2019)undefined Phys. Lett. B 795 277-undefined
  • [23] Song W(1975)undefined Teor. Mat. Fiz. 25 164-undefined
  • [24] Yu B(1968)undefined J. Math. Phys. 9 1605-undefined
  • [25] Gu Y(1972)undefined Nuovo Cim. B 9 351-undefined
  • [26] Kitaev A(1965)undefined Ann. Inst. H. Poincaré 3 1-undefined
  • [27] Sachdev S(1963)undefined Compt. Rend. Acad. Sci. 257 617-undefined
  • [28] Tarnopolsky G(1964)undefined Rev. Mod. Phys. 36 938-undefined
  • [29] Godet V(1972)undefined Ann. Inst. H. Poincare Phys. Theor. 17 337-undefined
  • [30] Marteau C(1980)undefined Phys. Rev. D 22 1285-undefined