Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity

被引:0
作者
Joaquim Gomis
Diego Hidalgo
Patricio Salgado-Rebolledo
机构
[1] Universitat de Barcelona,Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB)
[2] Centro de Estudios Científicos (CECs),Departamento de Física
[3] Universidad de Concepción,Instituto de Ciencias Físicas y Matemáticas
[4] Universidad Austral de Chile,undefined
[5] Université Libre de Bruxelles and International Solvay Institutes,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
2D Gravity; Classical Theories of Gravity; Space-Time Symmetries; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the non-relativistic and Carrollian versions of Jackiw-Teitelboim gravity. In the second order formulation, there are no divergences in the non-relativistic and Carrollian limits. Instead, in the first order formalism, some divergences can be avoided by starting from a relativistic BF theory with (A)dS2 × ℝ gauge algebra. We show how to define the boundary duals of the gravity actions using the method of non-linear realisations and suitable Inverse Higgs constraints. In particular, the non-relativistic version of the Schwarzian action is constructed in this way. We derive the asymptotic symmetries of the theory, as well as the corresponding conserved charges and Newton-Cartan geometric structure. Finally, we show how the same construction applies to the Carrollian case.
引用
收藏
相关论文
共 116 条
  • [1] Kitaev A(2018) = 4 JHEP 05 183-undefined
  • [2] Suh SJ(1983) × Phys. Lett. B 126 41-undefined
  • [3] Teitelboim C(1985)undefined Nucl. Phys. B 252 343-undefined
  • [4] Jackiw R(2016)undefined Phys. Rev. D 94 106002-undefined
  • [5] Maldacena J(2017)undefined JHEP 10 008-undefined
  • [6] Stanford D(2016)undefined JHEP 07 139-undefined
  • [7] Stanford D(2016)undefined Phys. Rev. Lett. 117 111601-undefined
  • [8] Witten E(2015)undefined Phys. Rev. X 5 041025-undefined
  • [9] Engelsöy J(2017)undefined Phys. Rev. B 95 155131-undefined
  • [10] Mertens TG(2017)undefined JHEP 12 069-undefined