Semi-Norms of the Bergman Projection

被引:0
作者
Marijan Marković
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
来源
Computational Methods and Function Theory | 2016年 / 16卷
关键词
Bergman projection; Bloch space; Primary 45P05; Secondary 47B38; 30H30;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Bergman projection operator maps the space of essentially bounded functions in the unit ball in the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional complex vector space onto the Bloch space. This paper deals with the various semi-norms of the Bergman projection. We improve some recent results.
引用
收藏
页码:65 / 78
页数:13
相关论文
共 10 条
  • [1] Choe B(1990)Projections, the weighted Bergman spaces, and the Bloch space Proc. Am. Math. Soc. 108 127-136
  • [2] Dostanić M(2008)Two sided norm estimate of the Bergman projection on Czech Math. J. 58 569-575
  • [3] Forelli F(1974) spaces Indiana Univ. Math. J. 24 593-602
  • [4] Rudin W(2014)Projections on spaces of holomorphic functions in balls Math. Scand. 115 143-160
  • [5] Kalaj D(2015)Norm of the Bergman projection J. Funct. Anal. 268 255-277
  • [6] Marković M(2012)Sharp Forelli–Rudin estimates and the norm of the Bergman projection Ann. Acad. Sci. Fenn. 37 245-249
  • [7] Liu C(1980)On the optimal constant for the Bergman projection onto the Bloch space Bull. Lond. Math. Soc. 12 241-267
  • [8] Perälä A(1980)Bloch functions in several complex variables I J. Rein. Angew. Math. 319 1-22
  • [9] Timoney R(undefined)Bloch functions in several complex variables II undefined undefined undefined-undefined
  • [10] Timoney R(undefined)undefined undefined undefined undefined-undefined