iVAR: A program for imputing missing data in multivariate time series using vector autoregressive models

被引:0
|
作者
Siwei Liu
Peter C. M. Molenaar
机构
[1] University of California,Human Development and Family Studies, Department of Human Ecology
[2] Davis,Department of Human Development and Family Studies
[3] Pennsylvania State University,undefined
来源
Behavior Research Methods | 2014年 / 46卷
关键词
Time series; Vector autoregressive model (VAR); Missing data;
D O I
暂无
中图分类号
学科分类号
摘要
This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.
引用
收藏
页码:1138 / 1148
页数:10
相关论文
共 50 条
  • [1] iVAR: A program for imputing missing data in multivariate time series using vector autoregressive models
    Liu, Siwei
    Molenaar, Peter C. M.
    BEHAVIOR RESEARCH METHODS, 2014, 46 (04) : 1138 - 1148
  • [2] Imputing Missing Values in EEG with Multivariate Autoregressive Models
    Kanemura, Atsunori
    Cheng, Yuhsen
    Kaneko, Takumi
    Nozawa, Kento
    Fukunaga, Shuichi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2639 - 2642
  • [3] Vector Autoregressive-Moving Average Imputation Algorithm for Handling Missing Data in Multivariate Time Series
    Sumertajaya, I Made
    Rohaeti, Embay
    Wigena, Aji Hamim
    Sadik, Kusman
    IAENG International Journal of Computer Science, 2023, 50 (02)
  • [4] Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm
    Bashir, Faraj
    Wei, Hua-Liang
    NEUROCOMPUTING, 2018, 276 : 23 - 30
  • [5] AN EVOLUTIONARY APPROACH FOR IMPUTING MISSING DATA IN TIME SERIES
    Figueroa Garcia, Juan Carlos
    Kalenatic, Dusko
    Lopez Bello, Cesar Amilcar
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2010, 19 (01) : 107 - 121
  • [6] Adjustment models for multivariate geodetic time series with vector-autoregressive errors
    Kargoll, Boris
    Dorndorf, Alexander
    Omidalizarandi, Mohammad
    Paffenholz, Jens-Andre
    Alkhatib, Hamza
    JOURNAL OF APPLIED GEODESY, 2021, 15 (03) : 243 - 267
  • [7] Imputing Missing Values Using Inverse Distance Weighted Interpolation for Time Series Data
    Dhevi, A. T. Sree
    2014 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, 2014, : 255 - 259
  • [8] Bayesian analysis of multivariate threshold autoregressive models with missing data
    Calderon V., Sergio A.
    Nieto, Fabio H.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (01) : 296 - 318
  • [9] Sparse vector Markov switching autoregressive models. Application to multivariate time series of temperature
    Monbet, Valerie
    Ailliot, Pierre
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 108 : 40 - 51
  • [10] An Observed Value Consistent Diffusion Model for Imputing Missing Values in Multivariate Time Series
    Wang, Xu
    Zhang, Hongbo
    Wang, Pengkun
    Zhang, Yudong
    Wang, Binwu
    Zhou, Zhengyang
    Wang, Yang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2409 - 2418