Coexistence, bifurcation and chaos of a periodically forced duffing system with absolute nonlinearity

被引:0
作者
Jiayun Chen
Fuhong Min
Qiusen Jin
Biaomin Ye
机构
[1] School of Electrical and Automation Engineering,
[2] Nanjing Normal University,undefined
来源
The European Physical Journal Special Topics | 2019年 / 228卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the nonlinear dynamics of a Duffing nonautonomous oscillator with absolute function is investigated, and the switching boundary and the corresponding domains are shown. Based on the discontinuous dynamical theory, the motions of the non-smooth duffing system at the switching boundary are studied, and the corresponding analysis conditions of the different motions are obtained, and the parameter mappings are also given. Through numerical simulations, chaotic motions and period orbits are described in detail with different parameters and initial conditions, and the switching bifurcation diagrams through the boundary and basins of attractors are also drawn to investigate the behaviors of the system and coexistence of different attractors.
引用
收藏
页码:1405 / 1419
页数:14
相关论文
共 33 条
[1]  
Zhang K.(2018)undefined Renewable Energy 130 814-undefined
[2]  
Qu Z.(2015)undefined Eur. Phys. J. Special Topics 224 1459-undefined
[3]  
Dong Y.(2009)undefined Neurocomput. 72 1839-undefined
[4]  
Brezetskyi S.(2009)undefined Acta Phys. Sin. - Ch. Ed. 58 3799-undefined
[5]  
Dudkowski D.(2018)undefined Nonlinear Dyn. 94 57-undefined
[6]  
Kapitaniak T.(2011)undefined J. Circuit Syst. 16 120-undefined
[7]  
Wei Q.(2012)undefined Electron. J. Qual. Theory Differ. Equ. 80 1-undefined
[8]  
Zhang H.(2001)undefined IEEE Trans. Circuits Syst. 48 636-undefined
[9]  
Dai J.(2005)undefined Commun. Nonlinear Sci. Numer. Simul. 10 1-undefined
[10]  
Zhang Y.(2005)undefined J. Sound Vib. 285 443-undefined